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We review recent developments in understanding of how impurities influence the electronic states
in the bulk of superconductors. Our focus is on the quasi-localized states in the vicinity of
impurity sites in conventional and unconventional superconductors and our goal is to provide a
unified framework for their description. The non-magnetic impurity resonances in unconventional
superconductors are directly related to the Yu-Shiba-Rusinov states around magnetic impurities
in conventional s-wave systems. We review the physics behind these states, including quantum
phase transition between screened and unscreened impurity, and emphasize recent work on d-wave
superconductors. The bound states are most spectacularly seen in scanning tunneling spectroscopy
measurements on high-Tc cuprates, which we describe in detail. We discuss very recent progress
on the states coupled to impurity sites which have their own dynamics. We also review inelastic
electron tunneling spectroscopy (IETS) features as could be seen by scanning tunneling microscopy
in real space and its Fourier-transformed images and impurity resonances in the presence of an
order competing with superconductivity. Last part of the review is devoted to the influence of
local deviations of the impurity concentration from its average value on the density of states in
s-wave superconductors. We review how these fluctuations affect the density of states and show
that s-wave superconductors are, strictly speaking, gapless in the presence of an arbitrarily small
concentration of magnetic impurities.
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I. INTRODUCTION

A. Aim and scope of this article

Real materials are not pure. Often excessive impuri-
ties hinder observations of beautiful physics that exists
in cleaner systems. For example, magnetic disorder de-
stroys the coherence of the superconducting state. At
the very least, in conventional metals, impurities lead to
higher resistivity. It is therefore very tempting to treat
impurities as unfortunate obstacles to understanding of
the true underlying physics of the systems under consid-
eration, to strive to make cleaner and better materials,
and to ignore imperfections whenever possible.

Yet sometimes impurities directly lead to the desired
physical properties. They are crucial in achieving func-
tionality of doped semiconductors: undoped semicon-
ductors are just band insulators and not useful for ap-
plications in electronics. The entire multi-billion dollar
semiconducting electronics industry is based on the pre-
cise control and manipulation of electronic states due to
dopant (impurity) states.

Consequently, sensitivity of a physical system to dis-
order can be a blessing in disguise. It can lead not only
to achieving new applications but also to uncovering the
nature of exotic ground states, elucidating details of elec-
tronic correlations, and producing electronic states that

are impossible in the bulk of a clean system. Until re-
cently, this idea has not been emphasized in the study of
correlated electron systems, but now more and more ef-
forts are focused on understanding the changes produced
by disorder in a wide variety of strongly interacting elec-
tronic matter. One of the most promising directions is
the study of disorder near quantum critical points, where
several types of ordering compete and exist in delicate
balance that impurities have the power to tip in favor of
one of the orders (Millis, 2003).

This is a review of the impurity effects on the electronic
states in superconductors. The main purpose of our ar-
ticle is to give a reader an appreciation of recent devel-
opments, review the current understanding and outline
further questions on how impurities affect conventional,
and especially unconventional superconductors. Super-
conductors present probably the first example of a non-
trivial many-electron system where consequences of dis-
order on the electronic states were studied experimentally
and theoretically, and this review focuses on these effects.

The main classical results on impurity effects in su-
perconductors, such as Abrikosov-Gor’kov theory of pair-
breaking by magnetic impurities (Abrikosov and Gorkov,
1960), and the Anderson theorem (Anderson, 1959), are
well covered in textbooks and reviews (Abrikosov et al.,
1963; Annett, 1990; Fetter and Walecka, 1971; de Gennes,
1989; Schrieffer, 1964; Sigrist and Ueda, 1991; Tinkham,
1996). The need to review the subject arises since a)
there are many new results; b) the analyses of the clas-
sical papers have been substantially modified in applica-
tions to novel materials; c) the emphasis of the study of
the impurity effects shifted from macroscopic to atomic
length scales.

From the early days, impurity doping was one of the
most important tools to identify the nature of the pair-
ing state and microscopic properties. A classical exper-
imental study of the role of magnetic impurities in con-
ventional superconductors was carried out by (Woolf and
Reif, 1965), and followed by many detailed investigations,
see e.g (Bauriedl et al., 1981; Dumoulin et al., 1975, 1977;
Edelstein, 1967).

In the past two decades we have witnessed a tremen-
dous growth of the number of novel superconductors.
Many of them belong to the general class of strongly
correlated electron systems, and, as a result of Coulomb
interaction, the superconductivity is unconventional, see
below. Both magnetic and nonmagnetic impurities are
pairbreakers in unconventional superconductors, and of-
ten impurity suppression of superconductivity is a strong
early hint of the unconventional pairing state. For exam-
ple, rapid suppression of the transition temperature, Tc,
in Al doped SrRuO4 was the first indication that it is a
p-wave superconductor (Mackenzie et al., 1998; Macken-
zie and Maeno, 2003). Study of the effect of impurities
on unconventional superconductors is still a developing
field, yet it is mature enough to warrant an overview.

Sometimes superconducting state emerges from com-
petition between different phases, such as magnetically
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ordered and paramagnetic in high-temperature cuprates,
organic materials and heavy fermion systems. Experi-
mentally, superconductivity often is the strongest when
the two competing states are nearly degenerate, near
quantum critical points, as in Ce based “115” heavy
fermion materials (Sidorov et al., 2002) and UGe2 (Sax-
ena et al., 2000). Study of impurity effects allows (at
least, in principle) to characterize the superconducting
state and uncover competing electronic correlations.

The same reasoning has driven the study of impu-
rity effects in high-Tc superconductors. Despite much
progress, at present there is no complete microscopic de-
scription and certainly no consensus on the mechanism
of superconductivity. Study of the impurity-induced
states has the potential to reveal the nature and ori-
gin of the superconducting state. Much of recent ex-
perimental work focused on the high-Tc systems, and
our comparison of theory and experiment inevitably em-
phasizes these materials. Nonetheless, this is emphati-
cally not a comprehensive review of impurity effects in
the cuprates. Their main properties are described in
many excellent reviews, including those on scanning tun-
neling microscopy (STM) (Fischer et al., 2005), angle-
resolved photoemission spectroscopy (ARPES) (Cam-
puzano et al., 2004; Damascelli et al., 2003) and on the
pseudogap state (Timusk and Statt, 1999), to which we
refer interested readers.

The new states and structures that appear due to dis-
order often are confined to micro- or mesoscopic length
scales. They would remain in the realm of academic
discussion were it not for the development of new tech-
niques and probes of disorder. At the time of classi-
cal work, experimental interest was solely in macroscopic
properties of materials: transition temperature, Tc, spe-
cific heat, and the average density of states (DOS) (de-
duced from measuring the tunneling conductance of pla-
nar junctions) were the experimentally measured quanti-
ties. With perfection of more local probes such as nuclear
magnetic resonance (NMR), and especially with develop-
ment of scanning tunneling microscopy and spectroscopy
(STM/STS), it becames possible to experimentally deter-
mine the structures on the atomic scales around the im-
purity sites. Therefore the emphasis of theoretical work
also shifted to the study of local properties. It is there-
fore timely and useful to review new results and ideas
about impurity-generated states in superconductors.

We had to be selective about the topics covered in this
article. In the spirit of new approaches, our review pri-
marily discusses the physics of the single impurity bound
or quasi-bound states at the atomic scales, and the lo-
cal electronic effects in the vicinity of defects. We also
discuss mesoscopic effects, and the impurity effects in
the presence of orders competing with superconductiv-
ity. The latter idea is applied to the pseudogap state of
high-Tc materials.

We restricted ourselves to the study of the behavior of
the density of states. A comprehensive review of all the
effects that were studied experimentally and discussed

theoretically is a much more difficult task that would take
substantially more space. We do not analyze here the
behavior of transport coefficients: while this is a subject
of intense current interest and many important results
have been obtained, it is beyond the scope of this article.

To keep this review useful for people entering the
field, we start with the Bardeen-Copper-Schrieffer (BCS)
model for superconductivity, and use a modified version
of this model throughout the article. In doing so we ne-
glect the corrections due to strong coupling; in the known
case of electron-phonon interaction these are quantita-
tive rather than qualitative (Carbotte, 1990; Schachinger,
1982; Schachinger and Carbotte, 1984; Schachinger et al.,
1980). In many unconventional materials, such as
cuprates, the dynamical glue in the self-consistent theory
is not known. Yet most people agree that the supercon-
ducting state of cuprates not very anomalous, and has
the superconducting gap of d-wave symmetry. We take
a view that at low energies in cuprates and other com-
pounds, for the purposes of this article, superconductiv-
ity is adequately described by the BCS theory with an
anisotropic gap.

B. Unconventional superconductivity

Examples of exotic superconductors discovered in the
last two decades include high-Tc, heavy fermion and or-
ganic superconductors, and SrRuO4. A common feature
to all of them is that the superconductivity is uncon-
ventional, i.e., the pairing symmetry is non-s-wave (in
contrast to conventional materials, such as lead).

Superconducting order parameter describes pairing of
fermions with time-reversed momenta, k and −k,

Ψ(k)α,β = 〈ψk,αψ−k,β〉 , (1.1)

where α, β are the spin indices. If the order parameter
transforms according to a nontrivial (trivial) represen-
tation of the point group of the crystal, the supercon-
ductor is called unconventional (s-wave). We distinguish
between the spin singlet pairing (total spin of the pair
S = 0), for which Ψ(k)α,β = Ψ(k)(iσy,αβ), where σy

is the Pauli matrix in spin space, and spin triplet state
(S = 1), when Ψαβ is a symmetric spinor in α, β. Since
the order parameter has to be antisymmetric under per-
mutation of fermion operators in Eq. (1.1), the spatial
part of Ψ(k)α,β is even for spin singlet superconductors
and odd in the spin-triplet case. Expanding in eigenfunc-
tions of orbital momentum, it follows that spin singlet
pairing corresponds to even orbital function of momen-
tum k and hence we call it s- (for l = 0), d-wave (for
l = 2), etc., superconductor in analogy with the notation
for the atomic states. For a spin triplet superconductor,
the orbital part is an odd function of k, and hence the
spin triplet superconductor can be p-wave (l = 1), f -wave
(l = 3) etc. More rigorously the pairing states are charac-
terized by the irreducible representation of the symmetry
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group of the crystal lattice, including the spin-orbit in-
teraction (Blount, 1985; Sigrist and Ueda, 1991; Volovik
and Gor’kov, 1984). Characterization in terms of orbital
moment is an oversimplification, and we use this termi-
nology with understanding that the correct symmetries
are implied for a given crystal structure. This classifi-
cation is given for BCS-like or even frequency supercon-
ductors. The classification is opposite for odd-frequency
pairing, where, for example, spin singlet state has odd
parity because pairing wave function is odd function of
time (Balatsky and Abrahams, 1992; Berezinskii, 1974).
We consider here only even-frequency superconductors.

We restrict ourselves to the most common examples
of the unconventional pairing state, for which the order
parameter averaged over the Fermi surface vanishes:

∑

k

Ψ(k)αβ = 0 . (1.2)

Hence superconductors with the constant or nearly con-
stant order parameter on the Fermi surface are s-wave,
while p-, d- or higher wave states, where Eq. (1.2)
holds, are signatures of an unconventional superconduc-
tor. There are several excellent recent reviews that ad-
dress the unconventional nature of superconducting pair-
ing states in specific compounds, such as p-wave super-
conductivity in SrRuO4 (Mackenzie and Maeno, 2003)
and d-wave state in high-Tc materials (Annett, 1990; Har-
lingen, 1995; Tsuei and Kirtley, 2000).

C. Outline

We start with the general overview of BCS-like super-
conductivity. To review the effects of impurities we need
to discuss the properties of superconductors in general.
In cuprates, as well as in some heavy fermion systems and
other novel superconductors, there is some evidence for
the existence of an order competing with superconductiv-
ity on all or parts of the Fermi surface. The exact nature
of the competing order parameter is only conjectured. A
general feature of all such models is the enhancement of
the competing order once superconductivity is destroyed,
for example in the vicinity of a scattering center. It has
been suggested that the reaction of the system to the
introduction of impurities can be an important test of
the order, or even growing correlations towards such an
order, in the superconducting state.

The prerequisite for such a test is the detailed un-
derstanding of the behavior of “simple” superconductors
with impurities. Work aimed at developing this under-
standing spans a period of more than 40 years, and some
of the very recent results continue to be fresh and un-
expected. Therefore we devote a large fraction of this
review to the discussion of the properties of supercon-
ductors with impurities in the absence of any competing
order. In this case, from a theoretical standpoint, before
discussing the impurity effects we need to agree upon
methods to describe the very phenomenon that makes the

impurity effects so interesting: superconductivity. Even
in the most exotic compounds investigated so far the su-
perconducting state itself is not anomalous, in that it
results from pairing of fermionic quasiparticles, and in
that these Cooper pairs may be broken by interaction
with impurities or external fields.

Impurity effects in conventional superconductors were
a subject of the very early studies by Anderson, who
provided the so called “Anderson theorem” (Anderson,
1959), and by Abrikosov and Gor’kov (Abrikosov and
Gorkov, 1960), hereafter AG. This pioneering work laid
the foundation for our understanding of impurity effects
in conventional and unconventional superconductors, de-
scribed in terms of electron lifetime due to scattering on
an ensemble of impurities. AG predicted the existence of
the gapless superconductivity that was subsequently ob-
served in experiments (Woolf and Reif, 1965). The brief
summary of the AG theory and its extension to non-s-
wave superconductivity are given in Table I, where effect
of impurities on the superconducting state on average,
or globally is listed.

S-WAVE P -WAVE D-WAVE

POTENTIAL SCATTERING − + +

MAGNETIC SCATTERING + + +

TABLE I Effects of potential and magnetic impurity scat-
tering on the s-, p- and d-wave superconductors are shown
qualitatively. “+” indicate that impurity scattering is a pair-
breaker and “−” is that impurity scattering is not a pair-
breaker. There is a qualitative difference between the po-
tential scattering in s-wave superconductors and any other
case. Potential scattering impurities are not pairbreakers in
s-wave case due to the Anderson theorem. This is an excep-
tional case. For any other case any impurity scattering will
suppress superconductivity. Obviously the details depend on
scattering strength and other details. At high enough con-
centrations both magnetic and nonmagnetic impurities will
suppress superconductivity regardless of symmetry.

After intense interest in the early days of the BCS the-
ory, the subject was considered “closed” in mid-60s, with
most experimentally relevant problems solved. How-
ever, recently there has been a revival of the interest in
the studies of “traditional” low-temperature s-wave su-
perconductors with magnetic and non-magnetic impuri-
ties, with many new theoretical and experimental results
changing our perspective on this classical problem.

A special place in this review is devoted to the study of
impurity induced local bound states or resonances. This
is an old subject, going back to the 60’s when the bound
states near magnetic impurities in s-wave superconduc-
tors were predicted in pioneering works of Yu (Yu, 1965),
Shiba (Shiba, 1968), and Rusinov (Rusinov, 1969). They
considered pairbreaking by a single magnetic impurity
in a superconductor, and found that there are quasi-
particle states inside the energy gap that are localized
in the vicinity of the impurity atom. The correspond-
ing gap suppression occurs locally and the concept of
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lifetime broadening is inapplicable. In general, in this
situation it is more useful to focus on local quantities,
such as local density of states (LDOS), local gap etc.,
rather than on average impurity effects (which vanish for
the single impurity in the thermodynamic limit). Yet
it is clear that this local physics at some finite concen-
tration of impurities suppresses superconductivity com-
pletely. This connection was discussed in (Rusinov, 1969;
Shiba, 1968; Yu, 1965). In particular, the formation of
intragap bound state and impurity bands due to mag-
netic impurities leads to filling of the superconducting
gap, and therefore connects to the AG theory (Abrikosov
and Gorkov, 1960).

At that time, there were no experimental techniques
to directly observe single impurity states. As a result
the entire subject was largely forgotten until the STM
was applied to study the impurity states by Yazdani et
al. (Yazdani et al., 1997). This reinvigorated the field
and led to a firm shift in the interest from global to local
properties. Soon afterwards STM was used to observe
local impurity states near vacancies and impurities in the
high-Tc cuprates (Hudson et al., 2001, 1999; Pan et al.,
2000b; Yazdani et al., 1999). These discoveries opened
a new field of research where impurities open a window
into the study of electronic properties of exotic materials
with atomic spatial resolution. As a first test of theories
this allowed a direct comparison of the local electronic
features in tunneling characteristics with the theoretical
predictions for the density of states.

We start by briefly reviewing the BCS theory in Sec. II.
Our main goal there is to review three approaches that
will be used to analyze the impurity effects: direct diago-
nalization of the Hamiltonian via the Bogoliubov-Valatin
transformation, the variational wave function of the orig-
inal BCS paper, and the Green’s function method which
is well suited to the analysis of multiple impurity prob-
lems. Then we define different types of impurity scatter-
ing in Sec. III. We pay special attention to distinguishing
between magnetic and non-magnetic impurities, and dif-
ferentiating between static and dynamic scatterers. The
basic features of non-magnetic scattering in s-wave su-
perconductors are outlined in Sec. IV.

To keep in tune with our intention to make the review
readable by graduate students and researchers entering
the field, we begin the discussion of the localized states
by considering an example of an impurity bound state in
a two-dimensional (2D) metal in Sec. V. Then we discuss
the low-energy bound state in s- and d-wave supercon-
ductors in Sec. VI and Sec. VII, respectively. We briefly
touch upon possible existence of impurity resonances in
different models of the pseudogap state of the cuprates in
Sec. VIII. Recent STM measurements on both conven-
tional and unconventional superconductors are discussed
in Sec. IX. Changes in the ground state of a supercon-
ductor containing a classical spin as a function of the
coupling strength between the spin and conduction elec-
trons are discussed in Sec. X.

We proceed to consider the situations when the impu-

rities have their own dynamics, so that their effect on
the electrons is complicated, see Secs. XI and XII, and
we also study the combined influence of the collective
modes and impurities in Sec. XII.C. The final two parts
of our review are devoted to the discussion on the effects
of impurities on meso- and macroscopic scale. For com-
pleteness, we briefly review the basic ideas of computing
the average density of states for a macroscopic sample in
Sec. XIII. For lack of space we cannot do justice to this
very rich subject and use it largely to discuss new results
on the impurity effect on the scales small compared to
the sample size, but large relative to the superconduct-
ing coherence length. In that situation there are dramatic
consequences of local impurity realizations that may be
different from the average, and we overview the results
for the density of states in Sec. XIV. We conclude with
the summary in Sec. XV.

D. Other related work

In focusing largely on the properties of impurities on
atomic or mesoscopic scales, we cannot give due atten-
tion within the confines of this review to several other
questions that have been important in the studies of im-
purities. One of these is how exactly does the impurity
band grow out of bound states on individual impurity
sites, i.e. what is the effect of interference between such
sites in real space. We briefly review some of recent work
in Sec. XIII, but do not discuss the subject in depth,
listing some of recent work that addresses the issue.

The usual finite lifetime diagrammatic approach, ne-
glecting multiple impurity scattering (Gorkov and Kalu-
gin, 1985; Hirschfeld et al., 1986; Schmitt-Rink et al.,
1986; Ueda and Rice, 1985) yields a constant density of
states at the Fermi level in a nodal superconductor with
impurities. In three dimensional systems the neglected
contributions are smaller by either a factor (kF l)−1 ¿ 1,
where kF is the Fermi wave vector, and l is the mean
free path, or by additional power of impurity concen-
tration, nimp ¿ 1. In two dimensions, and for d-wave
superconductors, the neglected diagrams contain a low
energy singularity, and therefore some of them contribute
to the density of states at leading order (Nersesyan et al.,
1995). This result of Nersesyan et al. spawned a num-
ber of attempts to solve the problem of many impurities
in a two-dimensional (2D) d-wave superconductor non-
perturbatively. Some of the approaches and results are
reviewed (from different standpoints) in Altland et al.,
2002; Hirschfeld and Atkinson, 2002.

Many of these non-perturbative solutions gave conflict-
ing results for the residual density of states, including fi-
nite (Ziegler, 1996; Ziegler et al., 1996), infinite (Pepin
and Lee, 1998, 2001), and vanishing with different power
laws in energy (Nersesyan and Tsvelik, 1997; Nersesyan
et al., 1995; Senthil and Fisher, 1999) (see also (Bhaseen
et al., 2001)). Further study demonstrated that the dif-
ferent results are due to subtle differences in the symme-
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try of the model used (Altland et al., 2000; Altland and
Zirnbauer, 1997), and can be partly understood by an-
alyzing the diffusion/cooperon mode of near nodal qua-
siparticles (Yashenkin et al., 2001), in analogy to dirty
metals (Altshuler, 1985; Lee and Ramakrishnan, 1985).
Detailed self-consistent numerical studies confirm that
the behavior of the DOS depends on the details of the
impurity scattering and electronic structure (Atkinson
et al., 2000; Zhu et al., 2000b). In particular, the di-
vergence only occurs in perfectly particle-hole symmet-
ric systems, and generically Atkinson et al. find that
there is a non-universal suppression of the DOS over a
small energy scale close to the Fermi level. Chamon and
Mudry, 2001 conjectured that the residual DOS always
diverges when the single impurity resonance is tuned to
the Fermi level. This divergence was not found in numer-
ical simulations of a model with large but finite on-site
potential (Hirschfeld and Atkinson, 2002).

The interference between many impurities have been
investigated recently (Atkinson et al., 2003; Morr and
Stavropoulos, 2002, 2003a; Zhu et al., 2000c, 2003, 2004b)
with the eye on the importance of these effects for the
interpretation of the features in the STM data on the
high-Tc cuprates collected over a large area of the sam-
ple. The interference is also responsible for the forma-
tion of the impurity bands and therefore is crucial for
determining the transport properties, which we do not
address in this review. Within the framework of the t-
matrix approximation transport properties of unconven-
tional superconductors in general (Arfi et al., 1988; Graf
et al., 1996; Hirschfeld et al., 1989, 1986, 1988; Pethick
and Pines, 1986; Schmitt-Rink et al., 1986), and high-
Tc cuprates in particular (Duffy et al., 2001; Graf et al.,
1995; Hirschfeld and Goldenfeld, 1993; Hirschfeld et al.,
1994, 1997; Quinlan et al., 1996, 1994) have been ex-
tensively discussed, and the experiments on both mi-
crowave, optical, and thermal conductivity are used to
extract properties of impurity scattering, see (Timusk
and Statt, 1999) for a review as well as very recent re-
sults in both experiment (Carr et al., 2000; Chiao et al.,
2000; Corson et al., 2000; Hill et al., 2004; Hosseini et al.,
1999; Lee et al., 2004; Segre et al., 2002; Tu et al., 2002;
Turner et al., 2003) and theory (Berlinsky et al., 2000;
Chubukov et al., 2003; Hettler and Hirschfeld, 1999; How-
ell et al., 2004; Nicol and Carbotte, 2003). The question
of localization in both s-wave (Ma and Lee, 1985) and d-
wave (Atkinson and Hirschfeld, 2002; Lee, 1993; Senthil
and Fisher, 2000; Senthil et al., 1998; Vishveshwara et al.,
2000; Yashenkin et al., 2001) continues to be investigated.
Some of these results have been summarized in recent re-
views on high-Tc systems (Timusk and Statt, 1999). We
also do not touch upon the rich phenomena related to
the surfaces playing the role of extended impurities that
can also lead to the formation of the bound states (Aprili
et al., 1998; Blonder et al., 1982; Buchholtz and Zwick-
nagl, 1981; Covington et al., 1997; Fogelström et al., 1997;
Hu, 1994; Kashiwaya and Tanaka, 2000).

By now there are also few reviews available on the

subject of impurity states. Joynt (Joynt, 1997) reviewed
early work on the impurity states within the t-matrix the-
ory focusing on anomalous transport due to finite lifetime
of the quasibound states around impurities. Byers, Flatte
and Scalapino, were among the pioneers of the studies of
the detailed electronic structure of the resonance state
and interference patterns (Byers et al., 1993; Flatté and
Byers, 1997a,b; Flatte and Byers, 1998), and reviewed
their and related work (Flatté and Byers, 1999). An
excellent review of thermal and transport properties of
low-energy quasiparticles in nodal superconductors was
recently given by Hussey (Hussey, 2002).

The subject is so rich and well developed that it does
not seem possible to do justice to addressing both lo-
cal quasiparticle properties around a single impurity site
and the questions of interference and transport within
the confines of a single paper. Therefore in the following
we overwhelmingly focus on the effect of impurities on
the local density of states, rather than transport proper-
ties, and leave the discussion of the non-trivial effects of
interference effects in low dimensions to future reviewers.
With this in mind we now are ready for a main discussion.

II. A BCS THEORY PRIMER

We begin by reviewing the BCS theory. This sec-
tion only briefly summarizes the results pertinent to our
discussion; many textbooks provide an in-depth view of
the theory (de Gennes, 1989; Ketterson and Song, 1999;
Schrieffer, 1964; Tinkham, 1996). Consider a general
Hamiltonian HBCS = Ĥ0(r) + Hint, where

Ĥ0(r) =
∑
α

∫
ddrψ†α(r)[ε(−i∇r)− µ]ψα(r) (2.1)

is the band Hamiltonian of quasiparticles with dispersion
ε(k), µ is the chemical potential, and the interaction part

Hint = −1
2

∑
α,β
γ,δ

∫
ddrddr′ψ†α(r)ψ†β(r′)Vαβγδ(r, r′)ψγ(r′)ψδ(r).

(2.2)
Here r is the real space coordinate, α and β are the spin
indices, and ψ† and ψ are the fermionic creation and
annihilation operators, respectively. The mean field ap-
proximation consists of decoupling the four-fermion in-
teraction into a sum of all possible bilinear terms, so
that

Hint =
∑

α,β

∫
ddrddr′

{
Ṽαβ(r, r′)ψ†α(r)ψβ(r′) (2.3)

+∆αβ(r, r′)ψ†α(r)ψ†β(r′) + ∆?
αβ(r, r′)ψβ(r)ψα(r′)

}
.

The effective potential, Ṽαβ(r, r′) is the sum of the
Hartree and Fock (exchange) terms, and the last two
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terms account for superconducting pairing. The pairing
field, ∆, is determined self-consistently from

∆αβ(r, r′) = −1
2

∑

γ,δ

Vαβγδ(r, r′)〈ψγ(r′)ψδ(r)〉. (2.4)

The pairing occurs only for positive Vαβγδ, and only
below the transition temperature, Tc; above Tc ∆αβ = 0.
In contrast, Hartree and Fock terms are finite at all tem-
peratures, and can be incorporated in the quasiparticle
dispersion, ε(k). These terms do change upon entering
the superconducting state, but their relative change is
of the order of the fraction of electrons participating in
superconductivity, and therefore is small for weak cou-
pling superconductors (∼ ∆/W ¿ 1, where W is the
electron bandwidth). Therefore the effective potential,
Ṽ , is not explicitly included in the following discussion
except where specified.

Therefore we start with a reduced mean field BCS
Hamiltonian,

HBCS =
∑
α

∫
ddrψ†α(r)Ĥ0(r)ψα(r) (2.5)

+
∑

α,β

∫
ddrddr′

{
∆αβ(r, r′)ψ†α(r)ψ†β(r′) + h.c.

}
.

The spatial and spin structure of ∆αβ(r, r′) deter-
mines the type of superconducting pairing. In most
of this review we consider singlet pairing, ∆αβ(r, r′) =
(iσy)αβ∆(r, r′), where ∆ is a scalar function, see previ-
ous section.

In a uniform superconductor the interaction depends
only on the relative position of the electrons, so that
V (r, r′) = V (ρ) with ρ ≡ r − r′. Therefore in the ab-
sence of impurities, the structure of the order parame-
ter in real space depends on the symmetry properties of
V (ρ). These are easier to consider in momentum, rather
than coordinate, space. In models with local attraction,
when V (ρ) = V0δ(ρ), the Fourier transform of the inter-
action is featureless, and ∆(k) = ∆0 —an example of an
isotropic, or s-wave superconductor.

In the remainder of this section we overview the main
methods solving the BCS Hamiltonian since the same
methods are commonly applied to the studies of impurity
effects in superconductors. The approaches that we con-
sider are: a) direct diagonalization via the Bogoliubov-
Valatin transformation; b) variational determination of
the ground state energy from the trial wave function;
and c) Green’s function formalism.

A. Bogoliubov transformation

Since the effective Hamiltonian of Eq. (2.5) is bilinear
in fermion operators, ψ and ψ†, it can be diagonalized
by a canonical transformation of the form

ψα(r) =
∑

n

[
unα(r)γn − αv∗nα(r)γ†n

]
, (2.6)

subject to condition |unα(r)|2+|vnα(r)|2 = 1. The coeffi-
cients u and v are determined by solving the Bogoliubov-
de Gennes (BdG) equations (de Gennes, 1989):

Euα(r) = H0(r)uα(r) +
∫

ddr′∆αβ(r, r′)vβ(r′),(2.7)

Evα(r) = −H?
0 (r)vα(r) +

∫
ddr′∆?

αβ(r, r′)uβ(r′).(2.8)

Here we suppressed the label n for brevity. Clearly, when
∆ = 0, coefficients u and v do not couple, and there is
no particle-hole mixing.

For each n there are four functions,
u↑(r), u↓(r), v↑(r), u↓(r) that need to be determined.
However, for a singlet superconductor, the matrix ∆αβ

is off-diagonal in the spin indices, so that u↑ (u↓)
couples only to v↓ (v↑), and hence only two of the
equations are coupled. In the presence of the general
impurity potential, however, all four components are
interdependent.

Equations (2.7)-(2.8), are coupled integro-differential
equations for the functions unα(r) and vnα(r). They have
to be complemented by the self-consistency equations on
∆αβ , which can be obtained directly from Eq. (2.4) to be

∆αβ(r, r′) =
1
2
Vαβγδ(r, r′)

∑
n

[
δunγ(r′)v?

nδ(r)f(−En)

+γv?
nγ(r′)unδ(r)f(En)

]
. (2.9)

Here the Fermi function f(E) = [exp(E/T ) + 1]−1.
In a uniform superconductor the Fourier transform of

the BdG equations, Eqs. (2.7)-(2.8), into the momentum
space gives

(ξk − Ek)ukα + ∆αβ(k)vkβ = 0, (2.10)
(ξk + Ek)vkα + ∆?

αβ(−k)ukβ = 0, (2.11)

where ξk is the bare quasiparticle energy, measured with
respect to the chemical potential, ξk = ε(k) − µ. In a
singlet superconductor

(ξk − Ek)uk↑ + ∆(k)vk↓ = 0, (2.12)
(ξk + Ek)vk↓ + ∆?(k)uk↑ = 0, (2.13)

and we recover the familiar energy spectrum Ek =√
ξ2
k + |∆(k)|2, with the coefficients u and v given by

(
u2
k

v2
k

)
=

1
2

[
1± ξk

Ek

]
. (2.14)

B. BCS variational wave function

Superconductivity originates from the instability of the
Fermi sea towards pairing of time-reversed quasiparticle
states. The variational wave function approach, origi-
nating with the BCS paper, is to restrict the trial wave
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function to the subspace of either empty or doubly occu-
pied states,

|ΨBCS(r)〉 =
∏
n

(an + bnc†n↑c
†
n̄↓)|0〉, (2.15)

and to minimize the energy, EBCS = 〈Ψ|H|Ψ〉. This
is an excellent approximation at low temperatures. In
Eq. (2.15) the vacuum state |0〉 denotes the filled Fermi
sea, and c†n↑ (c†n̄↓) creates a quasiparticle with spin up
(down) and with the wave function φn(r) (φ?

n(r)) that
is the eigenfunction of the single particle Hamiltonian.
Normalization requires that |an|2 + |bn|2 = 1.

In the absence of impurities the eigenfunctions, φn,
can be labeled by the same indices, k and α, as in the
previous section. Consequently, the variational approach
is equivalent to the Bogoliubov analysis with the choice
un(r) = anφn(r), and vn(r) = bnφn(r). In general, how-
ever, interaction with impurities may lead to the appear-
ance of the single particle states in the ground state wave
function, see Sec. X. It is worth remembering that the
energy of the BCS state is greater or equal to that of the
exact ground state.

C. Green’s functions

The third approach that we use is the Green’s func-
tion method, which originates with the work of Gor’kov.
Following Nambu we introduce a four-component vector
that is a spinor representation of the particle and hole
states,

Ψ†(r) = (ψ†↑, ψ
†
↓, ψ↑, ψ↓). (2.16)

The matrix Green’s function is defined as the ordered
average (hat denotes a matrix in Nambu space)

Ĝ(x, x′) = −〈TτΨ(x)Ψ†(x′)〉, (2.17)

where the four-component vector x = (r, τ) combines
the real space coordinate, r, and the imaginary time, τ .
The time evolution of the operators in the Heisenberg
approach is given by ∂ψ/∂τ = [HBCS , ψ].

For a singlet homogeneous superconductor the Hamil-
tonian of Eq. (2.5) in the Nambu notation takes the form,

HBCS =
∫

drΨ†(r)
[
ξ(−i∇)τ3 + ∆τ1σ2

]
Ψ(r), (2.18)

and we find (Maki, 1969)

Ĝ−1
0 (k, ω) = iωn − ξ(k)τ3 −∆(k)σ2τ1. (2.19)

Here ωn = πT (2n + 1) is the Matsubara frequency, σi

are the Pauli matrices acting in spin space, τi are the
Pauli matrices in the particle-hole space, and τiσj de-
notes a direct product of the matrices operating in the

4-dimensional Nambu space. The Fourier transform in τ
is defined as

Ĝ(k; τ) = kBT
∑
ωn

Ĝ(k, ωn)e−iωnτ (2.20)

The self-consistency equation for a single superconduc-
tor takes the form

∆(k) = −T

4

∑
ωn

∫
dk′V (k,k′)Tr [τ1σ2G0]. (2.21)

In BCS the interaction is restricted to a thin shell of
electrons near the Fermi surface, and therefore

∆(Ω̂) = −T

4
N0

∑
ωn

∫
dΩ̂′V (Ω̂, Ω̂′)Tr

[
τ1σ2

∫
dξkG0

]
,

(2.22)
where Ω̂ denotes a direction on the Fermi surface, and
N0 is the normal state density of states.

The off-diagonal component (Ĝ0)12 = F , is often called
the Gor’kov’s anomalous Green’s function since it de-
scribes the pairing average

Fαβ(x, x′) = −〈Tτψα(x)ψβ(x′)〉. (2.23)

In general Fαβ(x, x′) = gαβF (x, x′), where the matrix g
describes the spin structure of the superconducting order.
For singlet pairing g = iσy, and in a spatially uniform
superconductor

G(ωn,k) =
iωn + ξk

(iωn)2 − ξ2
k − |∆(k)|2 , (2.24)

F (ωn,k) =
∆(k)

(iωn)2 − ξ2
k − |∆(k)|2 . (2.25)

The connection with the Bogoliubov’s transformation
is provided by rewriting the Green’s functions as

G(ωn,k) =
u2
k

iωn − Ek
+

v2
k

iωn + Ek
, (2.26)

F (ωn,k) = ukv?
k

(
1

iωn − Ek
− 1

iωn + Ek

)
,(2.27)

where uk and vk are given by Eq. (2.14).
The three approaches discussed above are complemen-

tary and equivalent in the case of homogeneous super-
conductors. However, some of them are better suited
for addressing specific questions in the presence of im-
purities. In particular, the Green’s function method is
advantageous for determining the thermodynamic prop-
erties of a material and averaging over many impurity
configurations. For inhomogeneous problems, where we
are interested in the spatial variations of the supercon-
ducting order and electron density, both the BdG equa-
tions and Green’s functions are often used. The choice
of method depends on the type of question asked, and
we briefly describe the basic models and issues related to
impurity scattering in superconductors below.
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III. IMPURITIES IN SUPERCONDUCTORS

A. Single impurity potential

Grain and surface boundaries, twinning planes, and
other structural inhomogeneities scatter conduction elec-
trons and therefore affect the order parameters. Here we
focus on only one type of imperfection: impurity atoms.

a. Potential scattering. First and foremost an impu-
rity atom has a different electronic configuration than
the host solid, and therefore interacts with the density of
conduction electrons via a Coulomb potential.

Himp =
∑
α

∫
drψ†α(r)Upot(r)ψα(r). (3.1)

In good metals the Coulomb interaction is screened at
the length scales comparable to the lattice spacing, and
therefore the scattering potential is often assumed to be
completely local, Upot(r) = U0δ(r − r0), with the impu-
rity at r0. The resulting scattering occurs only in the
isotropic, s-wave, angular momentum channel. If finite
range of the interaction is relevant, scattering in l 6= 0
channels needs to be considered. In that case the treat-
ment is similar to that of magnetic scattering in con-
ventional superconductors, see Sec. VI, and was applied
to unconventional superconductors in, for example (Bal-
atsky et al., 1994; Kampf and Devereaux, 1997).

In the four-component vector notation of the previ-
ous section the potential scattering has the same matrix
structure as the chemical potential, or ξ(k) in Eq. (2.19),
so that

Himp =
∫

drΨ†(r)Ûpot(r)Ψ(r), (3.2)

Ûpot = U0τ3δ(r− r0) (3.3)

b. Magnetic scattering. In addition to the electrosta-
tic interactions, if the impurity atom has a magnetic mo-
ment, there is an exchange interaction between the local
spin on the impurity site and the conduction electrons,

Himp =
∑

αβ

∫
drJ(r)ψ†α(r)S · σαβψβ(r). (3.4)

The range of interaction here is determined by the quan-
tum mechanical structure of the electron cloud asso-
ciated with the localized spin. Again, in reality we
often consider a simplified exchange Hamiltonian with
J(r) = J0δ(r − r0), which captures the essential physics
of the problem. In the four-component vector notations
of the previous section the electron spin operator becomes
(Maki, 1969)

α =
1
2

[
(1 + τ3)σ + (1− τ3)σ3σσ3

]
. (3.5)

Therefore

Himp =
∫

drΨ†(r)Ûmag(r)Ψ(r), (3.6)

Ûmag = J(r)S ·α. (3.7)

c. Anderson impurity. However, even if the ground
state of an isolated atom has a spin, putting such an im-
purity into a host matrix may modify the spin configura-
tion as the impurity electrons couple to the conduction
band. Therefore a more realistic model for an impurity
site is the Anderson model, with the Hamiltonian

HA =
∑
α

E0d
†
αdα + Und↑nd↓ + Hsd, (3.8)

Hsd =
∑

k,α

Vsdc
†
k,αdα + h.c. (3.9)

Here E0 is the position of the impurity level relative to
the Fermi energy, d† and d operate on the impurity site,
U is the Coulomb repulsion for the electrons localized
on the impurity site, and c†k, ck create and annihilate
the conduction electrons. This Hamiltonian allows the
electrons to hop on and off the impurity site, resulting
in a finite width of the impurity level, Γ = π|Vsd|2N0,
see e.g. (Hewson, 1993) for a detailed analysis in a host
normal metal. The model describes potential scattering,
when U ¿ Γ. On the other hand, when E0 ¿ EF ,
E0 + U À EF , and U À Γ, the local levels remain split,
so that the impurity state is singly occupied and has a
local spin. Therefore the model allows a natural interpo-
lation between potential and magnetic scattering. The
price to pay for such a rich behavior is the difficulty of
studying the model analytically, and in practice many
results have been obtained in the simplified treatments
of a) and b) above, although a number of very thorough
numerical renormalization group (NRG) studies of An-
derson impurities in superconductors exist. We review
some of them, but do not focus on those extensively.

B. Scanning tunneling microscopy as a tool to measure
local density of states

STM/STS is a powerful and versatile tool for studying
electronic properties of solids. Its remarkable energy and
spatial resolution is particularly well suited for charac-
terization of materials at small energy and short length
scales. STS measures the tunneling current between the
metallic tip and the sample as a function of voltage bias,
and the tip position is controlled with atomic resolu-
tion (Martnez-Samper et al., 2003; Pan et al., 1998; Sud-
erow et al., 2001; Yazdani et al., 1997). From the tun-
neling Hamiltonian, the differential conductance – the
derivative of the current with respect to the bias, is re-
lated to the electron spectral function of the sample,
Aσ(λ, ω) = −(1/π)ImGσ(λ, ω + iδ) with δ → 0+, by

dI

dV
∝ −

∫
dω

∑

λ,σ

|Tλ|2Aσ(λ, ω)f ′FD(ω − eV ) . (3.10)

Here fFD is the Fermi distribution function, λ is the
electronic eigenstate for states in the sample (for trans-
lationally invariant system λ is often chosen to be a
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momentum index k). The tunneling matrix element is
|Tλ|2 =

∑
ρ |Mλρ|2Atip(ρ, ω), where Mλρ is the matrix

element for the overlap of the electronic states in the tip
and sample. If the DOS of the tip is featureless around
the Fermi energy, |Tλ|2 is nearly energy independent. If
we further assume a λ-independent tunneling matrix el-
ement, and consider low temperature (T → 0), the tun-
neling conductance is proportional to the local density
of state (LDOS) at the bias energy at the tip position,
dI/dV (r) ∝ ρ(eV, r) =

∑
λ,σ Aσ(λ, ω = eV)|〈λ|r〉|2.

This, in turn is related to the electronic Green’s function
via ρ(r, eV ) = −π−1

∑
σ ImGσ(r, r; eV + iδ). Therefore

tunneling spectroscopy provides a real space image of the
local density of states that is computed theoretically. For
more details see also (Fischer et al., 2005).

C. Many impurities

In all of our discussions we assume noninteracting im-
purities 1 so that the net impurity potential is

Ûimp(r) =
∑

i

Ûimp(r− ri) (3.11)

=
∫

dr′ρi(r′)Ûimp(r− r′). (3.12)

Here Û is a matrix in both spin and particle-hole space,
and we introduced the impurity density,

ρi(r) =
∑

i

δ(r− ri). (3.13)

We also work in the dilute limit, where the average im-
purity concentration ni =

∫
drρ(r)/V ¿ 1 with V being

the system volume.
A local physical quantity, such as the LDOS at the po-

sition r, measured by the STM, depends on the distance
to nearby impurities, and therefore is different for differ-
ent impurity distributions. In contrast, thermodynamic
quantities, such as Tc or the density of states measured
in planar junctions, are averaged over the sample and
hence over many random local configurations of impu-
rities. Therefore in computing their values we average
over all impurity configurations (Abrikosov et al., 1963),
so that (bar denotes impurity average)

Ḡ(ωn,k) =
Ni∏

i=1

[
1
V

∫
driG(ωn,k, r1, . . . , rNi)

]
. (3.14)

By definition ρ̄imp = ni. We also assume an uncorre-
lated, or random, impurity distribution, which means

ρ(r)ρ(r′) = niδ(r− r′) + n2
i .

1 For magnetic scatterers the effect of the RKKY interac-
tion between impurities on the superconducting properties is
small, (Galitskii and Larkin, 2002; Larkin et al., 1971)

For dilute impurities n2
i ¿ ni, and we neglect the second

term compared to the first. In Sec. XIII we implement
this procedure to determine the impurity-averaged DOS.

D. The self-energy and the T -matrix approximation

To compute the Green’s function in the presence of
impurities we often employ the T -matrix approximation.
This method is described elsewhere (Hirschfeld and Gold-
enfeld, 1993; Hirschfeld et al., 1986, 1988; Hotta, 1993;
Hussey, 2002; Mahan, 2000), and we only summarize it.

For a single impurity with the scattering potential
Ûk,k′ in the momentum space, the T -matrix accounts ex-
actly for multiple scattering off that impurity. In the lan-
guage of Feynman diagrams, the corresponding process
is shown in Fig. 1. Since the translational invariance is
broken by the impurity, the Green’s function depends on
two momenta, k and k′,

Ĝ(k,k′) = Ĝ0(k) + Ĝ0(k)Ûk,k′Ĝ0(k′) (3.15)

+
∑

k′′
Ĝ0(k)Ûk,k′′Ĝ0(k′′)Ûk′′,k′Ĝ0(k′) + . . . ,

where Ĝ0 is given by Eq. (2.19). We suppressed the fre-
quency index as the scattering is elastic. The series can
be summed to write (see Fig. 1)

Ĝ(k,k′) = Ĝ0(k) + Ĝ0(k)T̂k,k′Ĝ0(k′), (3.16)

where the T -matrix is given by an infinite series

T̂k,k′ = Ûk,k′ +
∑

k′′
Ûk,k′′Ĝ0(k′′)Ûk′′,k′ + . . .(3.17)

= Ûk,k′ +
∑

k′′
Ûk,k′′Ĝ0(k′′)T̂k′′,k′ . (3.18)

This equation needs to be solved for T̂ . If the impu-
rity scattering is purely local, the scattering is isotropic,
Ûk,k′ = Û , greatly simplifying the equation, as T̂ depends
only on energy, but not on the momentum.

Note that we can draw the set of diagrams in Fig. 1 in
real space, and write the corresponding set of equations
for the T -matrix and Green’s function Ĝ(r, r′)

Ĝ(r, r′;ω) = Ĝ0(r, r′; ω) + Ĝ0(r, r0; ω)T̂ (ω)Ĝ0(r0, r′; ω)
(3.19)

The T -matrix lends itself easily to describe the effect
of an ensemble of impurities. In the context of unconven-
tional superconductors the first such treatment of trans-
port properties is due to Pethick and Pines (Pethick and
Pines, 1986). The so called self-consistent T -matrix ap-
proach (SCTM) considers multiple scattering on a single
site of an electron that has already been scattered on
all other impurity sites (Hirschfeld et al., 1986, 1988;
Schmitt-Rink et al., 1986). This results in replacing
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FIG. 1 Multiple scattering on a single impurity. Thick (thin)
line denotes full (bare) Green’s function, and the dashed line
denotes scattering process. The second line defines the T -
matrix according to Eq. (3.18).

the bare Green’s function in Eq. (3.18) by its impurity-
averaged counterpart, Ĝ(k, ω). After averaging over the
random impurity distribution the translational invari-
ance is restored, and the Green’s function depends on
a single momentum k. The combined effect of impurities
is given by the self energy, Σ̂(k, ω) = niT̂k,k, namely

Ĝ−1(k, ω) = Ĝ−1
0 (k, ω)− Σ̂(k, ω). (3.20)

In contrast to the single impurity case where Eq. (3.16)
with the T -matrix given by Eq. (3.18) is the exact so-
lution of the problem, the Green’s function given above
is an approximation, and much recent research is moti-
vated by questions about how accurately it describes the
properties of nodal superconductors with impurities.

E. Static and dynamic impurities

So far we only considered static impurities. However,
for potential scattering it is possible that a vibrational
mode modulates the charge on the impurity site, and
Upot acquires a characteristic frequency. Such a mode
can be extended, as a phonon, or local. Influence of the
dynamical impurity on the local properties of a supercon-
ductor is a relatively new subject discussed in Sec. XII,
see however (Brandt, 1970).

For magnetic scattering the situation is more complex.
Degeneracy between the spin-up and spin-down states
on the impurity site and the non-trivial commutation re-
lations between different spin components ensure that
quantum dynamics of the impurity is relevant. The dy-
namics of the local spin flips leads to the screening of
the impurity spin by the conduction electrons in a metal
below the Kondo temperature, TK , see (Hewson, 1993)
for review. In Sec. XI we review the current status of the
studies of Kondo effect in superconductors.

Impurity spin dynamics does not play a major role: a)
for large spins, S À 1 (except in a magnetic field), or b)
when the Kondo temperature is low, and measurements
are done at T À TK . In these limits the approxima-
tion of classical spin suffices, and the correspconding lo-
cal and global density of states are analyzed in Sec. VI
and Sec. XIII, respectively.

IV. NON-MAGNETIC IMPURITIES AND ANDERSON’S
THEOREM

One of the most important early experimental results
was the robustness of the conventional superconductivity
to small concentrations of non-magnetic impurities. The-
oretical underpinning of this result is known as Ander-
son’s theorem (Anderson, 1959). Anderson noticed that,
since superconductivity is due to the instability of the
Fermi surface to pairing of time-reversed quasiparticle
states, any perturbation that does not lift the Kramers
degeneracy of these states does not affect the mean field
superconducting transition temperature.

This is most clearly seen from the BCS analysis, which
we carry out following Ma and Lee, 1985, for an isotropic
pairing potential, Vαβγδ(r, r′) = V δ(r−r′)δαδδβγ . In the
absence of a magnetic field the coefficients an = sin θn

and bn = cos θn in Eq. (2.15) can be taken real without
loss of generality, so that the self-consistency condition,
Eq. (2.9) reads

∆n = V
∑

m 6=n

∆m√
ε2m + ∆2

m

∫
ddrφ2

n(r)φ2
m(r). (4.1)

Here εm are the energies of the eigenstates, and

∆n =
∫

ddr∆(r)φ2
n(r). (4.2)

As noted above, in the BCS approach φ’s are the eigen-
functions of the single particle Hamiltonian. In a pure
system ∆(r) = ∆n = ∆0. The most important assump-
tion underlying Anderson’s theorem is that, in the pres-
ence of impurities, when φn(r) are rather complicated
functions, the superconducting order parameter can still
be taken to be uniform, ∆(r) = ∆1. Then the gap equa-
tion, Eq. (4.1), takes the form

1
V

=
∫

ddrdεφ2
n(r)

N(ε, r)√
ε2 + ∆2

1

. (4.3)

If the density of states of the system with impurities,

N(ε, r) =
∑
m

φ2
m(r)δ(ε− εm), (4.4)

is unchanged compared to that of the pure metal,
N(ε, r) ≈ ρ0, the solution of the gap equation Eq. (4.3),
is ∆1 = ∆0. Therefore the transition temperature and
the gap are insensitive to the impurity scattering at the
mean field level.

The Anderson theorem explained why superconduc-
tivity was robust to disorder in early experiments. It
is important to realize, however, that it is an approx-
imate statement about the thermodynamic averages of
the system. Beginning with the next section we analyze
in more detail the changes that impurities create in su-
perconductors. We will see that even purely potential
scattering does induce changes in the local properties of
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superconductors, albeit the corresponding change in the
transition temperature remains minimal. The Anderson
theorem brings to the need to separate the study of impu-
rity effects on different length scales, from lattice spacing
to the coherence length, to sample size.

Before proceeding we discuss the extensions of the
Anderson’s treatment of impurities. In weakly disor-
dered systems N(ε, r) ≈ ρ0. Ma and Lee (Ma and Lee,
1985) argued that Anderson’s theorem remains valid even
in strongly disordered systems provided the localization
length, L À (ρ0∆0)1/d. In that case a large number of
states localized within energy ∆0 of the Fermi surface
form a local superconducting patch. Josephson interac-
tion between the patches then leads to global phase co-
herence at T = 0. Ma and Lee argued that the theorem
holds all the way to the limit of site localization.

At the same time the superfluid stiffness, i.e. the abil-
ity to carry supercurrent, is affected by disorder: when
the quasiparticle lifetime, τ , becomes sufficiently short,
∆0τ ¿ 1, the superfluid density ρs ≈ ∆0τ . Consequently
the local phase fluctuations of the order parameter are
strong, and the experimentally observed transition tem-
perature is severely suppressed compared to the mean
field Tc. Studies of such granular superconductors are
outside the scope of this review.

For dilute impurities Anderson’s theorem is valid pro-
vided the superconducting order parameter is nearly uni-
form. Since the “healing length” of ∆(r) over which it
can change appreciably is the coherence length, ξ0 '
~vF /∆0, where vF is the Fermi velocity, while the
Coulomb screening length for the charged impurities in
metals is of the order of the lattice spacing, a, for ξ0 À a
the order parameter remains essentially uniform, and An-
derson’s theorem holds. Recent studies considered im-
purity scattering in superconductors with ultrashort co-
herence, and found that, when the pairing range is of
the order of the electron bandwidth, Anderson’s theorem
is violated (Ghosal et al., 1998; Moradian et al., 2001;
Tanaka and Marsiglio, 2000).

Ghosal et al. (Ghosal et al., 1998), and Xiang and
Wheatley (Xiang and Wheatley, 1995) explored the dif-
ference between the single particle excitation gap and
the superconducting order parameter as a function of
disorder. When disorder depletes the density of states,
both quantities at first decrease simultaneously. How-
ever, the spectral gap persists even when superconduct-
ing off-diagonal long range order vanishes: this may be
related to formation of local pairs without phase coher-
ence (Ma and Lee, 1985).

In most experimentally relevant situations, however,
the corrections to the main statement of Anderson’s the-
orem are quantitative rather than qualitative. Therefore
it is very instructive and generally sufficient to consider
the impurity effects in BCS-like superconductors.

V. SINGLE IMPURITY BOUND STATE IN
TWO-DIMENSIONAL METALS

Before we proceed to superconductors, it is very in-
structive to review a simpler problem of an impurity in a
metal. We show here a T -matrix calculation for finding
the bound states due to a single impurity in d dimen-
sions with an on-site attractive potential U(r) = U0δ(r),
where U0 ≤ 0. The Hamiltonian is

H =
∑

k

[ε(k)− µ]c†k,σck,σ +
∑

k,k′
U0c

†
k,σck′,σ, (5.1)

We consider, for simplicity, the single particle case (µ =
0), although the results for a normal metal follow by re-
placing ε(k) → ξ(k) = εk − µ below.

The bare Green’s function for a free particle is

G0(ω,k) = [ω − ε(k)]−1. (5.2)

Since the vertex of the impurity interaction, U0, is mo-
mentum independent, the equation for the T -matrix is
particularly simple and follows from Eq. (3.18),

T (ω) = U0 + U0

∑

k

G0(ω,k)T (ω)

T (ω) =
U0

1− U0

∑
k G0(ω,k)

(5.3)

Summation over k is performed using the DOS

N(ε) =
∑

k

δ(ε− ε(k)) = Γdε
d
2−1, (5.4)

where Γd is a constant dependent on dimension. Then

g0(ω) =
1
N

∑

k

G0(ω,k) =
∫ W

0

dεN(ε)
ω − ε

' −Γdω
d−2
2 ,(5.5)

for d 6= 2, where W is the half bandwidth. Here N is
the represents the system size. In two dimensions g0 '
−Γ2 ln(W/|ω|). Consequently, the T -matrix for d 6= 2 is
given by

T =
U0

1− gdω
d−2
2

(5.6)

where gd = −U0Γd > 0 is the effective coupling constant,
and by the same expression with the obvious substitution
of ln(W/ω) for d = 2.

Poles of the Green’s function give the energy spectrum
of single particle excitations. The poles of the Green’s
functions in the presence of impurity scattering, G =
G0 + G0TG0, see Eq. (3.16), consist of the poles of the
original Ĝ0, and poles of the T -matrix. The latter signify
the appearance of new states. We can find the energy of
this state, ω0, from Eq. (5.6). The bound state (ω0 < 0,
see Fig. 2) is formed for an arbitrarily small potential
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FIG. 2 Impurity bound state in a metal at energy ω0 is formed
as a result of a multiple scattering.

|U0| in d = 1, 2, but requires a critical coupling for d = 3.
The energy of this state is given by

ω0 ∼ (g1)2, if d = 1; (5.7)

ω0 = W exp(− 1
g2

), if d = 2; (5.8)

ω0 ∼ [g
1
2
3 − g

1
2
3c], g3 ≥ g3c, if d = 3, (5.9)

where the d = 3 critical coupling g3c ∼ W−1/2.
We focus in more detail on the two-dimensional case,

when g2 = Γ2|U0| and Γ2 = m
2π is the electron density

of states. The bandwidth, W ' ~2
2ma2 is the ultraviolet

cutoff corresponding to the lattice parameter a for free
particle. This result can be compared to the solution
of the Schrödinger’s equation for the particle in the 2D
attractive potential U0 (Landau and Lifshitz, 2000), Ch.
45. For an arbitrary potential U(r) the solution obtained
using the T-matrix is asymptotically correct if the scat-
tering length is greater than a. For shallow potential the
bound state energy −ω0 is exponentially small, and the
characteristic extent of the bound state wave function is
l0 = ( ~2

2mω0
)1/2 À a Therefore in this limit we can safely

approximate U(r) = U0δ(r), where U0 =
∫

U(r)dr.
Finding the energy of the bound state, Eq. (5.8), is

only one part to the solution. We also want to determine
the corrections to the local density of states due to bound
state. We write the equation for the Green’s function in
real space, Eq. (3.19),

G(r, r′; ω) = G0(r, r′; ω) + G0(r, 0; ω)T (ω)G0(0, r′; ω)

and read off the position dependent DOS

N(r, ω) = − 1
π

ImG(r, r; ω)

= N0(r, ω) + δN(r, ω). (5.10)

The first term is the DOS of a clean system, and the sec-
ond is the correction due to the bound state. Consider
ω ≈ ω0. Since the bound state is below the bottom of the

band, the unperturbed Green’s function G0 has no imag-
inary part in this range. Therefore the only contribution
to ImG(r, r; ω) in Eq. (5.10) is from the T -matrix

ImT (ω) = Im
1

1/g2 − log[W/(−ω)]

= Im ln−1[
ω + iδ

ω0
]

= πδ(ω − ω0), (5.11)

and the correction to the DOS of a clean system is

δN(r, ω) = |G0(r, ω0)|2δ(ω − ω0) (5.12)

with G0(r, ω) = N0J0(kF r) ln[W
ω ] is the real part of

Green’s function in 2D systems. Equations (5.9) and
(5.12) are the main results of this section. They estab-
lish the strategy to which we adhere in finding the im-
purity induced bound states: a) find the poles of the T
matrix and the new poles of the full Green’s function, b)
compute the inhomogeneous DOS due to the impurity
induced state. There are other approaches to search for
scattering induced bound states. For example, the ex-
act numerical solution for a finite system is the only ap-
proach available for calculations accounting for the self-
consistent suppression of the superconducting order.

VI. LOW-ENERGY STATES IN s-WAVE
SUPERCONDUCTORS

A. Potential scattering

Even though the potential scattering does not change
the bulk properties of isotropic superconductors, it may
affect the local density of states. The first analysis of
the conditions for the existence of the bound state and
the structure of the Friedel oscillations around a spher-
ically symmetric impurity in an s-wave superconductor
is due to Fetter (Fetter, 1965). Here we follow (Machida
and Shibata, 1972; Shiba, 1973) and consider the Ander-
son impurity model, Eqs. (3.8)-(3.9) in the limit U = 0
(resonance scattering). As discussed above the localized
state acquires a finite width, Γ = π|Vsd|2N0, due to hy-
bridization with the conduction band. Consequently the
effective scattering potential varies significantly over the
bandwidth energy, violating the provisions of Anderson’s
theorem. The T -matrix approach gives (Machida and
Shibata, 1972; Shiba, 1973)

T̂ (ω) = |Vsd|2τ3

[
ω−E0τ3−|Vsd|2τ3

∑

k

Ĝ0(k, ω)τ3

]−1

τ3.

(6.1)
The poles, ω0, of the T -matrix determine the location of
the bound states

ω2

[
1 +

2Γ√
∆2 − ω2

]
= E2

0 + Γ2. (6.2)
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In most physical situations Γ À ∆, so that

ω0 = ±∆(1− 2π2(∆Nd(0))2), (6.3)

where Nd(0) = π−1Γ/(Γ2 +E2
0) is the density of states of

the resonant impurity level. Typically ∆Nd(0) ∼ 10−3,
so that the bound state lies essentially at the gap edge.
Shiba considered a finite but small value of the Coulomb
repulsion and allowed for the induced pairing on the im-
purity site (Shiba, 1973). He concluded that, even though
the bound state may be shifted to lower energies, it still
lies within 10−3∆ of the gap edge, and therefore can be
neglected in the discussions of physical properties.

B. Classical spins

If the impurities are magnetic, the time-reversal sym-
metry is violated, and therefore superconductivity is sup-
pressed. We consider a combination of the potential scat-
tering, Ûpot(r) = V (r)τ3, and the magnetic scattering,
Eq. (3.6), written in the momentum space,

Hex =
1

2N

∑
k,k′
αβ

J(k− k′)c†k,ασαβ · Sck′β . (6.4)

As discussed in Sec. III.E, for S À 1 or T À TK , we
ignore Kondo screening, and consider scattering on clas-
sical spins first studied independently by Shiba, Rusinov,
and Yu (Rusinov, 1968, 1969; Shiba, 1968; Yu, 1965).
Technically this is achieved by taking S → ∞, while si-
multaneously J → 0 so that JS = const. In this limit
the localized spin acts as a local magnetic field.

The impurity location is chosen at the origin for a BCS
s-wave superconductor with the unperturbed Hamil-
tonian of the form

H0 =
∑

kα

εkc†k,αckα +∆0

∑

k

{c†k↑c†−k↓+ c−k↓ck↑}. (6.5)

This problem serves as a starting point for all subsequent
analysis of the resonance states in superconductors.

To find a localized state with energy 0 < E < ∆0 near
a single paramagnetic impurity we perform a Bogoliubov
transformation (Rusinov, 1968; Yu, 1965) to find

Euα(r) = ε(k)uα(r) + i∆σy
αβvβ(r) + Uαβ(r)uβ(r),(6.6)

Evα(r) = −ε(k)vα(r)− i∆σy
αβuβ(r)− Uαβ(r)vβ(r).(6.7)

This system is solved by Fourier transforming the equa-
tions and expanding the impurity potentials in spherical
harmonics in k-space, Jl and Vl, and has solutions at

El

∆0
=

1 + (πN0Vl)2 − (πN0JlS/2)2√
[1 + (πN0Vl)2 − (πN0JlS/2)2]2 + 4(πN0JlS/2)2

,

(6.8)
where N0 is the normal state DOS at the Fermi energy.
This result can be written in a more elegant form using

the phase shifts, δl, of scattering for up (+) and down
(−) electrons, in each angular channel,

tan δ±l = (πN0)(Vl ± JlS/2). (6.9)

Then the energies of the states in the gap become

εl =
El

∆0
= cos(δ+

l − δ−l ). (6.10)

Clearly, for purely potential scattering (δ+
l = δ−l ) the

spectrum begins at the gap edge, and there are no in-
tragap states. However, as the magnetic scattering in-
creases, low-energy states appear below the gap edge.
Purely magnetic scattering corresponds to δ+

l = −δ−l ,
and strong scattering (unitarity limit, δ ∼ π/2) yields
a localized state deep in the gap, while weak scattering
(δ ¿ 1) results in the bound state close to the gap edge.

The same result can be obtained using the Green’s
function formulation (Rusinov, 1969; Shiba, 1968) and
solving the single impurity problem via the T -matrix. In
the Nambu notations

Ĝ(k,k′; ω) = Ĝ0(k, ω)δ(k−k′)+Ĝ0(k, ω)T̂ (k,k′)Ĝ0(k′, ω).
(6.11)

Here the T -matrix is computed as in Sec. III.D for a
matrix Hamiltonian of Sec. III.A, and we sum over the
indices of the matrix α in each vertex. The l-th angular
component, T̂l, satisfies (for a spherical Fermi surface and
isotropic gap)

T̂l(ω) = Ûl + Ûl

∫
dεĜ0(k, ω)T̂l(ω). (6.12)

The full expressions for Tl is straightforward to ob-
tain (Rusinov, 1969) but is rather cumbersome, so that
we do not give it here. Even for spherically symmetric
scattering (l = 0 only) with both V0 6= 0 and J 6= 0 the T -
matrix is simple yet lengthy (Okabe and Nagi, 1983). The
bound state energy is, of course, still given by Eq. (6.10).

For purely magnetic spherically symmetric exchange,
J(k − k′) = J , the T -matrix has a particularly simple
form (Shiba, 1968), with the diagonal, in spin indices,
component

T (1)(ω) =
1
N

(JS/2)2ĝ0(ω)
I − (JSĝ0(ω)/2)2

. (6.13)

Here ĝ0 is the local matrix Green’s function,

ĝ0(ω) =
1
N

∑

k

Ĝ0(k, ω) = −πN0
ω + ∆0σ2τ2√

∆2
0 − ω2

. (6.14)

The bound state energy

ε0 =
E0

∆0
=

1− (JSπN0/2)2

1 + (JSπN0/2)2
. (6.15)

The wave functions of the bound states at El can be
computed using the Bogoliubov equations above. In the



15

simplest case of isotropic scattering at distances r À p−1
F ,

both u(r) and v(r) vary as (Fetter, 1965; Rusinov, 1969)

sin(pF r − δ±0 )
pF r

exp(−r| sin(δ+
0 − δ−0 )|/ξ0) , (6.16)

that is, the state is localized near the impurity site at
distances

r0 ∼ ξ0

| sin(δ+
0 − δ−0 )| =

ξ0√
1− ε20

. (6.17)

The square of these coefficients gives the spatial depen-
dence of the amplitude of the particle and hole compo-
nents of the density of states at a given position r (Yaz-
dani et al., 1997).

The analysis above was carried out under the assump-
tion that the variation of the order parameter, ∆, around
the impurity site does not change the position of the reso-
nance state. There are several characteristic length scales
for this variation, δ∆(r). Far away from the impurity,
r À ξ0, at temperatures close to Tc, where this variation
can be determined perturbatively, δ∆(r)/∆0 ' 1/(pF r)
(Heinrichs, 1968; Rusinov, 1968). This power law is in-
sensitive to the phase shifts of scattering on the impurity.
At low temperatures a fully self-consistent treatment is
required, which leads to δ∆(r) decaying as (pF r)−3 and
oscillating on the scale of ξ0∆0/ωD, where the Debye
temperature ωD sets the scale for the interaction between
electrons (Schlottmann, 1976).

In the immediate vicinity of impurity, vF /ωD ¿ r ¿
ξ0, the variation of the order parameter is δ∆(r)/∆0 '
1/(pF r)2 in the linear response approximation (Rusinov,
1968). In the fully self-consistent treatment at distances
r ¿ ξ0ωD/EF , this dependence was found to acquire an
oscillating factor sin2 pF r (Schlottmann, 1976).

In the Anderson model the local change ∆(r) is related
to the impurity T -matrix (Kim and Muzikar, 1993), and
can be determined if a reliable approximation for the T -
matrix exists for the given parameter range. In principle,
the method of Kim and Muzikar covers both Kondo and
mixed-valence regimes, and is useful in determining the
local structures of the order parameter.

In all these cases, the suppression of the order parame-
ter is determined by the Fermi wavelength, and does not
affect the position of the bound state.

VII. IMPURITY-INDUCED VIRTUAL BOUND STATES
IN d-WAVE SUPERCONDUCTORS

We now extend our discussion to impurity in-
duced states in d-wave superconductors. Scalar (non-
magnetic) impurities are pair-breakers for “higher-
orbital-momentum” states, such as d-wave: The change
of the quasiparticle momentum upon scattering disrupts
the phase assignment for particular directions of the
momenta in a nontrivial pairing state (Anderson, 1959;
Markowitz and Kadanoff, 1963; Tsuneto, 1962). This

also follows from the analysis of the self-energy in the
Abrikosov-Gorkov theory (Abrikosov et al., 1963). An
early argument about pairbreaking effects of potential
scattering is due to Larkin (Larkin, 1965).

As we have emphasized, for pairbreaking impurities the
local properties of the superconductor near the impurity
site, such as the LDOS and the gap amplitude, are modi-
fied dramatically. To capture these modifications, we use
a variation of the Yu-Shiba-Rusinov approach (Rusinov,
1968; Shiba, 1968; Yu, 1965), see Sec. VI. We restrict
our consideration to the s-wave scatterers (l = 0) close
to the unitarity limit, δ0 ' π/2, when the bound state
energy is far from the gap edge. In contrast to the s-wave
superconductors, in d-wave systems the density of states
below the gap maximum, ∆0, is non-zero, and varies lin-
early with energy in a pure system, N(ω)/N0 ' ω/∆0.
Consequently, the overlap with the particle-hole contin-
uum only allows the formation of resonance, or virtual
bound states, with a finite lifetime.

We focus on point-like defects, and use the T -matrix
approach. A closely related method uses quasiclassi-
cal approximation and ideas of Andreev scatteringto re-
produce the same results (Chen et al., 1999; Choi and
Muzikar, 1990; Shnirman et al., 1999). Interesting ex-
tensions are obtained within the quasiclassical formalism
for extended defects: for example, index theorem dic-
tates the existence of a low energy quasi-bound state in
unconventional superconductors (Adagideli et al., 1999).

High-Tc cuprates with Zn substitution for in-plane Cu
is a well studied example of impurity system. Zn ions
have a full d shell, and are nominally non-magnetic. High
stability of this configuration, and rapid suppression of
Tc by Zn doping (Hotta, 1993; Ishida et al., 1991) support
the view that Zn ions are strong non-magnetic scatterers.
Another point of view, that Zn induces localized moment
on neighboring Cu sites (Bobroff et al., 2001; Polkovnikov
et al., 2001), leads naturally to Kondo problem in gapless
superconductors, and we discuss it in Sec. XI.

Based on strong anisotropy of electronic transport, we
model cuprates as a 2D d-wave superconductor, and an-
alyze virtual impurity-induced bound states, closely fol-
lowing (Balatsky et al., 1995; Buchholtz and Zwicknagl,
1981; Salkola et al., 1996, 1997; Stamp, 1987). Our re-
sults are easily extended to any nontrivial pairing state
and to higher dimension, and are relevant, for example,
for heavy-fermion superconductors with impurities.

Main results of this section are as follows: (i) A
strongly-scattering scalar impurity produces a localized,
virtual or virtually bound state (or resonance) in a d-
wave superconductor. It is intuitively obvious that any
strong enough pair-breaking impurity — magnetic or
non-magnetic — will induce such a state. Indeed, the
low-lying quasiparticle states close to the nodes in the
energy gap will be strongly influenced even by a non-
magnetic impurity potential, resulting in a virtual bound
state in the unitary limit. (ii) This should be com-
pared to the fact that, in s-wave superconductors, mag-
netic impurities produce bound states inside the energy
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gap (Machida and Shibata, 1972). The energy Ω′ and
the decay rate Ω′′ of this state are given by

Ω ≡ Ω′ + iΩ′′ = −∆0
πc/2

log(8/πc)

[
1 +

iπ

2
1

log(8/πc)

]
(7.1)

where c = cot δ0. These results are valid provided
log(8/πc) À 1, and assuming band particle-hole sym-
metry. The impurity breaks local particle-hole symme-
try, however, since Ω′ has a definite sign. In the unitary
limit, c → 0, the virtual bound state is a sharp reso-
nance at Ω → 0 with Ω′′/Ω′ → 0. In the opposite case of
weak scattering, c . 1, the energy of the state formally
approaches Ω′ ∼ ∆0 and the state is ill-defined since
Ω′′ ∼ Ω′ (see Fig. 10 in Sec. VIII). The wave function of
the bound state decays as a power law, Ψ(r) ∼ 1/r, and
is not normalizable. The wave function is localized along
the directions where gap vanishes (nodal directions).

A. Single potential impurity problem

Consider a potential impurity at r = 0 described by

Hint =
∑

kk′σ

U0c
†
kσck′σ (7.2)

where U0 is the strength of the isotropic scattering, re-
sulting in phase shift δ0. The T -matrix is independent of
wavevector, and the Green’s function is

Ĝ(k,k′; ω) = Ĝ0(k, ω)δkk′ + Ĝ0(k, ω)T̂ (ω)Ĝ0(k′, ω) ,(7.3)

where in Ĝ0 we chose the dx2−y2 gap ∆k = ∆0 cos 2ϕ.
For s-wave scattering the matrix T̂ = T0τ̂0 + T3τ̂3

(Balatsky et al., 1994; Hirschfeld and Goldenfeld, 1993;
Hirschfeld et al., 1988; Lee, 1993; Loktev and Pogorelov,
2002; Pethick and Pines, 1986; Pogorelov, 1994; Schmitt-
Rink et al., 1986; Shiba, 1968; Stamp, 1987), and its di-
agonal element is

T (ω)11 = 1/[c− g11(ω)], (7.4)

where g11(ω) = 1
2πN0

∑
k[Ĝ(0)(k, ω)(τ̂0 + τ̂3)]11. The

quasi-bound states are given by the poles of the T -matrix,

c = g11(Ω), (7.5)

which is an implicit equation for the energy of the impu-
rity resonance Ω0 as a function of c = cot δ0.

For particle-hole symmetric case g11 = g0(ω) =〈
ω/

√
∆(ϕ)2 − ω2

〉
FS

, where the angular brackets de-
note an average over the Fermi surface; for simplicity,
we take 〈•〉FS =

∫ • dϕ/2π 2. For |ω| ¿ ∆0, we find

g0(ω) = − 2ω

π∆0

(
log

4∆0

ω
− iπ

2

)
. (7.6)

2 We assume that the energy gap has line nodes in three dimensions
with weak quasiparticle dispersion along the z axis; an extension
to a general three-dimensional case is straightforward.
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FIG. 3 Graphic solution of Eq. (7.5) for U0 > 0. We show
physically relevant solution with Ω′′0 ¿ Ω′0. If Img0(Ω0) À
Reg0(Ω0), the resonance is broadened and merges with con-
tinuum. Resonances below (or above, for U0 < 0) the band
are sharp, with most of spectral weight. The virtual bound
state inside the gap is well resolved for large U0 (small c).

Substituting in Eq.(7.5) the solution, Eq.(7.1), follows
immediately. In Fig. 3 we illustrate a solution of the
Eq. (7.5) for fermions with a finite bandwith.

The solution of Eq. (7.5) is complex, indicating a res-
onant nature of the quasiparticle state, better described
as a virtual state. This is easily seen form Eq. (7.1),
which solves Eq. (7.5) to logarithmic accuracy. How-
ever, as c → 0, the resonance can be made arbitrarily
sharp. For c = 0, the virtual state becomes a sharp reso-
nance state bound to the impurity (Balatsky et al., 1995).
As c → 1−, Ω′ and Ω′′ increase without bound so that
Ω′′/Ω′ → 1−, and the solution becomes unphysical. For
c > 1, no solution has been found for Ω. 3

To solve the single impurity problem one has to retain
both T0 and T3 components of the T -matrix,

T0 =
g0(ω)

c2 − g2
0(ω)

, T3 =
c

c2 − g2
0(ω)

. (7.7)

Each of them has two poles at c = ±g0(ω), however,
T11 = T0 + T3 has only one pole, see Eq. (7.4). Sign of
the resonance energy reflects a particle-hole asymmetry
introduced by the on-site impurity potential U0.

Now we turn to the physical implications of these vir-
tual bound states in a d-wave superconductor, and con-
sider the most interesting case of unitary impurities in the
dilute limit, separated by a distance l À ξ0. These bound
states are nearly localized close to the impurity sites (see
below), and substantially modify the local characteris-
tics of the superconductor, such as density of tunneling

3 A related model of the Anderson impurity in an unconven-
tional superconductor was considered by L. Borkowskii and P.
Hirschfeld, Phys. Rev. B 46, 9274 (1992). The results found
here for pure potential scattering require the generalization of
the Anderson model to include the impurity potential phase shift,
independent of the Kondo temperature. This aspect of impurity
scattering has not been addressed previously.
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states, observed in STM, and the local NMR relaxation
rate close to the impurity site.

Consider a local density of electronic states,

N(r, ω) = − 1
π

Im g11(r, r; ω + i0+) (7.8)

with the Green’s function in real space

Ĝ(r, r′; ω) = Ĝ0(r− r′, ω) + Ĝ0(r, ω)T̂ (ω)Ĝ0(r′, ω).

The local density of states, N(r, ω) = N(ω)+Nimp(r, ω) ,
has two contributions. The first, position-independent,
is due to bulk delocalized quasiparticles with Ek =√

ξ2
k + ∆2

k. Using g(0)(0, ω) =
∑

k[u2
k/(ω−Ek)+v2

k/(ω+
Ek)], where uk and vk are the Bogoliubov factors, we find
for a superconductor with line nodes, N(ω)/N0 = ω/∆0,
at ω ¿ ∆0. The second term,

Nimp(r, ω) = − 1
π

Im [Ĝ0(r, ω)T̂ (ω)Ĝ0(r, ω)]11 (7.9)

describes a local change in the DOS due to the virtual
bound state created around the impurity site.

In 2D d-wave SC this impurity state is cross-shaped
in real space, with long tails extending along the gap
nodes as shown in Fig. 4. Consider unitary scattering,
for which the resonance is at Eimp,n ≡ Ω → 0; see Sec. V.
As Im G(0)(r, ω = 0) = −πN(ω = 0) = 0 for bulk qua-
siparticles, only the imaginary part of the T-matrix con-
tributes to Nimp. The probability density for the bound-
state decays quadratically in the distance from the im-
purity. Along the gap nodes,

Nimp(r, ω = 0) = Re [Ĝ(0)(r, ω = 0)]2 ∝ r−2, (7.10)

while in the direction of the maximal gap

Nimp(~r, ω = 0) ∝ ∆2
0

E2
F

r−2. (7.11)

In addition to the power law asymptotic decay at large
distances, there is an additional contribution that decays
exponentially with the angle-dependent coherence length
of the superconductorξ(ϕ) = ~vF /|∆(ϕ)|. This contri-
bution is important for the detailed comparison of the
induced LDOS to that measured by STM near the im-
purity site, since the intensity near impurity is mapped
out only within few lattice spacings. For resonance en-
ergy away from the Fermi energy the wave functions of
the resonance decay exponentially with the characteristic
length scale ~vF /|Ω0|. Detailed discussion of this decay
and the particle-hole asymmetry due to impurity poten-
tial is given in (Aristov and Yashenkin, 1998; Balatsky
and Salkola, 1998).

Gap nodes lead to the power law decay of the wave
function along all directions at large distances r >> ξ.
This follows from the power counting of the d-wave prop-
agator: G(r, ω → 0) ∼ ∫

d2k exp(ik · r)G(k, ω → 0) ∼∫
kdk exp(ik·r) vF k

k2 ∼ 1/r. The logarithmically divergent

normalization reflects the fact that the impurity state is
virtually bound. At finite impurity concentration the di-
vergence is cut off at the average distance between impu-
rities. For an arbitrary position of the resonance, taking
into account that only one state has been produced with
Eimp,n = Ω′ + iΩ′′, we find

Nimp(r, ω) =
Ω′′i
π

∑

i

[ |u(r− ri)|2
(ω − Ω′i)2 + Ω′′2i

− |v(r− ri)|2
(ω + Ω′i)2 + Ω′′2i

]
. (7.12)

Here the sum is over impurity positions, ri, and u(r −
ri), v(r − ri) are the eigenfunction of the Bogoliubov-de
Gennes equation with an impurity.

Local effects of impurities are best revealed by local
probes. NMR experiments on Cu in Zn-doped cuprates
are quite useful in this regard. From Eq. (7.10) and
below, one concludes immediately that the NMR signal
shows two distinct relaxation rates (or even a hierarchy
of rates) depending on the distance of the Cu sites from
the impurity location. The Cu sites near the impurities
couple to the higher LDOS and have a faster relaxation
rate at low T . At finite impurity concentration (∼ 2%),
the volume-averaged density of states is finite as ω → 0,
and therefore the relaxation rate of Cu atoms close to
and away from an impurity have the same temperature
dependence, (T1T )−1 = const, but are of a different mag-
nitude. Precisely this behavior has been observed experi-
mentally: Ishida et al. (Ishida et al., 1991) measured two
NMR relaxation rates for Cu in Zn-doped YBa2Cu3O7−δ.
The second NMR signal with faster relaxation was in-
ferred to arise from the sites near the impurities. Alloul
and collaborators pointed out that the NMR signal from
the sites close to impurities shows a distribution of relax-
ation rate, which reflects local electronic and magnetic
distortions produced by the impurity in the host system,
see (Bobroff et al., 2001) and references therein.

More direct evidence for the impurity induced res-
onances in high-Tc came from scanning-tunneling mi-
croscopy. These experiments were crucial in establish-
ing the existence of the impurity induced resonances in
cuprates and their anisotropic nature (Hudson et al.,
1999; Pan et al., 2000b), and are discussed in section IX.

We contrast our picture of the dilute limit of strongly
scattering centers with the usual approach of averaging
over a finite concentration of impurities. In the latter
approach the two distinct NMR relaxation rates, arising
from inequivalent sites, cannot be resolved. Similarly the
inhomogeneous LDOS due to localized states is lost after
averaging over impurity positions.

The distinction between the a true bound states and
continuum in nodal superconductors is not as well defined
as in s-wave systems. Any finite temperature leads to a
finite lifetime for the bound states, and they hybridize
with the continuum of low-energy extended quasiparti-
cles since the two are not separated by an energy gap.
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FIG. 4 Illustration of the cross shaped nature of the impurity
state. Shown is the spectral density Aσ(r,±Ω0) as a function
of position and spin in units of N0∆0 for a) µ = 0 and b)
µ = −W , 2W is the bandwidth, in a two-dimensional d-wave
superconductor as a function of position around a classical
magnetic moment ( N0J0 = 10 and U0 = 0) located at r =
0; a is the lattice spacing. These results are computed self-
consistently with ξ = 10a. At half filling, the spectral density
obeys particle-hole symmetry: A↑(r, Ω0) = A↓(r,−Ω0). The
energies of the shown virtual-bound states are a) Ω0 = 0.05∆0

and b) Ω0 = 0.5∆0. From (Salkola et al., 1997)

B. Single magnetic impurity problem

Full analysis for a magnetic impurity is more involved.
For a quantum spin one needs to address the Kondo ef-
fect, which is discussed in Sec. XI. In the simplified treat-
ment of a “classical” spin (S À 1 or T À TK) the mean
field analysis is similar to that in previous section (Salkola
et al., 1997). In that case the main effect of the exchange
coupling between the local moment S and electron spin
is the renormalization of the effective scattering potential
for electrons of two different spin orientations: they see
net impurity potential U0 ± J , where U0 is the potential
scattering strength and J is the exchange coupling to the
impurity spin. There are two virtual bound states, one
for each electron spin orientation, with the energies,

Ω1,2 = − ∆0

2N0(U0 ± J) ln |8N0(U0 ± J)| (7.13)

STM data on Ni-doped high-Tc cuprate
Bi2Sr2CaCu2O8+δ are fit well using this simple formula,
see Sec. IX. Even in the classical limit the spin S may
have its own dynamics, that was omitted in the mean
field approach of Ref. (Salkola et al., 1997). Further
studies are certainly desirable.

FIG. 5 Self-consistently determined gap function near scalar
impurity in a 2D d-wave superconductor. Gap suppression is
strongly localized near impurity site aside from weak oscillat-
ing tails. From (Franz et al., 1996)

C. Self-consistent gap solution near impurity

Impurity scattering locally modifies the order parame-
ter, and we discuss the self-consistent gap in 2D d-wave
systems. To address these effects one has to use the
(numerically determined) exact electron spectra near the
impurity, and solve the self-consistent equation on the
d-wave gap, defined on the bonds of a square lattice,

∆(i, i + δ) =
Vi,i+δ

2

∑
n

[un(i + δ)v∗n(i) + u∗n(i)vn(i + δ)]

× tanh(
En

2kBT
) . (7.14)

Such numerical solutions were presented in (Franz et al.,
1996; Salkola et al., 1997; Tsuchiura et al., 2000; Zhu
et al., 2000a). Impurity scattering clearly suppresses the
gap magnitude, and the suppression is the strongest at
the impurity site. The gap quickly recovers to a bulk
value, although there are oscillating tails at long dis-
tances due to 2kF oscillations, as shown in Fig. 5.

Realistically the difference between the self-consistent
and the non self-consistent solutions is not important be-
yond few lattice spacings from the impurity site. Near
such a site local gap suppression is clearly seen in the
STM data, see Sec. IX.

For superconducting order parameters with complex
internal structure there is a possibility that impurity
couples to a soft mode other than the amplitude mode
(Rainer and Vuorio, 1977). This was investigated for
the non-unitary A-phase superconductor by Choi and
Muzikar (Choi and Muzikar, 1990), who concluded that
an indirect coupling to the rotational mode may produce
a local magnetic moment around the impurity site.
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D. Spin-orbit scattering impurities

Spin-orbit coupling in impurity scattering in supercon-
ductors is much less thoroughly investigated than purely
magnetic or potential scattering. The standard form of
the spin orbit scattering is due to Elliott and Yafet:

HSOimp =
∑

k,k′
λSOc†k,α~σαβ · (k× k′)ck′β , (7.15)

where λSO is the scattering strength. This coupling is
present even for nonmagnetic impurities, is pairbreaking,
and produces additional quasi-bound states inside the
gap. The structure of these additional resonances and
their response to a Zeeman magnetic field were studied
by Grimaldi (Grimaldi, 1999, 2002), who concluded that
in the limit of strong SO scattering the local DOS exhibits
off-site particle-hole symmetric resonance (in contrast to
potential scatterers), which is not split by the field.

In a different type of SO scattering from a magnetic
impurity, the impurity spin is coupled to the orbital mo-
tion of the conduction electrons. For 2D d-wave sys-
tems this was motivated by experiments on Ni doped
Bi2212 (Movshovich et al., 1998; Neils and Harlingen,
2002) and studied in (Balatsky, 1998; Barash et al.,
1997; Graf et al., 2000). We write the Hamiltonian,
HSO,imp = γSOL̂ · S, in second quantized notation:

HSO,imp =
∑

k,k′
γSOc†k,σS · (k× k′)ck′σ, (7.16)

where γSO is the strength of coupling and S is the im-
purity spin. Predominantly in plane motion of electrons
(as is the case in Bi2212) couples the angular momen-
tum Lz with respect to the impurity site L̂z = i~∂φ to
Sz. The net effect of this term is twofold. First, it is
pairbreaking, so that the gap is locally suppressed, and a
resonance is formed. Even more interesting and nontriv-
ial is the distortion of the dx2−y2 -wave order parameter in
the vicinity of impurity, which results from the nontriv-
ial orbital structure of the d-wave order. This state is a
linear combination of the state with lz = 2 and lz = −2,
∆(φ) = ∆0 cos(2φ) ∝ exp(2iφ) + exp(−2iφ) ∼ x2 − y2.
The two orbital components are affected differently by
scattering. Treating HSOimp perturbatively, one gener-
ates in the first order the correction to the order pa-
rameter ∆

′
= i∆0γSO sin(2φ) ∼ xy. There is a finite

amplitude for incoming d-wave pair |in〉 ∝ |x2 − y2〉 to
scatter into |out〉 ∝ i|xy〉 channel:

|out〉 = iγSO∆0L̂ · S|in〉 = i~γSO∆0 sin(2φ) , (7.17)

generating an out of phase component of the order para-
meter near an SO impurity, coexisting with and induced
by the original dx2−y2 symmetry.

This illustrated one of the more non-trivial effects of
the impurity scattering in superconductors with orbital
structure to the Cooper pair wave function. For more
details, see (Balatsky, 1998; Graf et al., 2000; Zhu and

Balatsky, 2002). An applied magnetic field (which cou-
ples to Lz similarly to the Sz term in Eq. (7.17)), not only
suppresses the d-wave order parameter but also produces
the secondary dxy component, see (Balatsky, 2000; Franz
and Tešanović, 1998; Kuboki and Sigrist, 1998; Laughlin,
1998; Tanuma et al., 1998).

E. Effect of doppler shift and magnetic field

The main effect of the Zeeman field is to split the im-
purity induced resonances(Grimaldi, 1999, 2002). The
orbital effect of magnetic field can be analyzed by con-
sidering the Doppler shift of the quasiparticle energy.

In the simplest approach, due to Galilean invariance, in
the presence of a superflow with velocity vS(r) the elec-
tron propagators are modified: G(k, ω) → G(k, ω−k·vS)
for a planar wave state at k. The rest of the calcula-
tion for the impurity state follows exactly the previous
analysis. The local scattering potential of the impurity
means summing over all momenta to obtain local Green’s
function G0(ω), and only this local propagator enters the
solution for the resonance, Eq. (7.1). Therefore all the
changes in the resonance state are due to the increase in
the density of states arising from the Doppler shift.

The effect of the superflow produced by the screen-
ing currents on the impurity resonance was studied
by Samokhin and Walker, 2001, who pointed out that
Doppler shift leads to the broadening of the resonance.
The scale of the effect is set by the ratio of the typical
Doppler shift vSkF at the impurity site to the resonance
energy,Ω′. If the Doppler shift is small, the effect is negli-
gible, while in the opposite limit of vSkf À Ω′ the super-
flow broadens the resonance significantly. The superflow
does not shift the resonance energy.

Tsai and Hirschfeld (Tsai and Hirschfeld, 2002)
analysed the effect of an isolated impurity on the pene-
tration depth of a d-wave superconductor, and concluded
that it leads to a divergent 1/T contribution at finite tem-
peratures, in close analogy to the Andreev bound states
(Barash et al., 2000; Walter et al., 1998).

F. Sensitivity of impurity state to details of band structure

Above we used a single band model with particle-hole
symmetry to prove the existence and explore the basic
features of the impurity induced resonance. Real bands
are asymmetric, and the effect of asymmetry was consid-
ered by Joynt (Joynt, 1997), who modeled it by a con-
stant DOS with different energy cutoffs at the upper and
lower limit. To make a quantitative comparison with the
experimental data on impurity resonances, see Sec. IX,
we have to understand the details of the band structure.
For example, in the cuprates, the in-plane Cu dx2−y2 and
O px,y bands are relevant. Above we assumed that upon
the reduction of the complicated band structure of high-
Tc (or another material) to a single band model, one can
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FIG. 6 The LDOS as a function of energy at the impurity
site (left panels) and at one of its nearest neighbors (right
panels) in a 2D lattice. The upper panels are for repulsive
potential, U0 = 0 (black line), 2 (blue line), 5 (green line),
and 10 (red line) while the lower panels are for attractive
potential, U0 = 0 (black line), -2 (blue line), -5 (green line),
and -10 (red line). The band structure parameters are t = 1,
t′ = 0, and the chemical potential µ = 0.

still describe nonmagnetic impurity by a single parame-
ter, the on-site potential U0. Reality is more complex.

Even within the one band approach one can still ex-
plore the change in the position of the impurity-induced
resonance beyond the simplest assumptions. The reso-
nance position depends on the sign of the impurity po-
tential, the electron occupation numbers, and the band
structure. To illustrate sensitivity to the latter we per-
formed an exact diagonalization for the t-t′-V model with
nearest-neighbor hopping t, next nearest neighbor hop-
ping t′, and a negative V that describes the nearest neigh-
bor attraction and produces d-wave pairing. The single
particle energy dispersion in the normal state is

ξk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky − µ , (7.18)

and µ is the chemical potential. Impurity was modeled
by an on-site potential U0. We considered three possibil-
ities: (i) t = 1, t′ = 0, µ = 0 (the filling factor n = 1.0),
with band particle-hole symmetry present, Fig. 6; (ii)
t = 1, t′ = −0.2, µ = −0.784(n = 0.84), with no band
particle-hole symmetry, Fig. 7; (iii) t = 1, t′ = −0.3, µ =
−1.0(n = 0.85), again with band particle-hole symmetry
absent, Fig. 8. We refer to the band particle-hole sym-
metry because the local particle-hole symmetry is broken
by the potential U0.

As shown in these figures, for the cases (i) and (ii), the
band DOS has two coherent peaks. Also for the case (ii),
the DOS is asymmetric with respect to the zero energy.
In these two situations, a repulsive potential U0 > 0 leads
to an impurity state at Ω′0 < 0, manifested by a peak
in the LDOS below the Fermi energy at the impurity
site. In contract, the peaks are above the Fermi energy
at the four nearest neighbor sites. Correspondingly, an
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FIG. 7 Same as Fig. 6 for t = 1, t′ = −0.2, and µ = −0.784.
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FIG. 8 Same as Fig. 6 for t = 1, t′ = −0.3 and µ = −1.0.

attractive impurity potential U0 < 0 induces a state at
Ω′0 > 0 at the impurity site, but below the Fermi energy
at its nearest neighbors.

For the case (iii), in addition to the two coherent peaks,
there are also two van Hove singularity peaks (more pro-
nounced on the negative energy side and faint at the
positive side). Now for a repulsive impurity, the on-site
resonance peak does shift from the negative energy side
slightly above the zero energy. This phenomenon is ab-
sent for the cases of (i) and (ii). For U0 < 0, the result
is similar to the cases (i) and (ii). Here we the optimal
doping consider regime for (ii) and (iii). At other dopings
all possibilities discussed above could occur depending on
band structure.

The sign of the impurity potential for Zn and Ni atoms
in cuprates is still an unsettled issue. It is believed that
these atoms substitute Cu in the Cu-O plane, and do
not change the hole doping. Then Zn++ is in d10 con-
figuration, and the third ionization energy is a rough
measure of the impurity potential, U0 (even though the
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Cu d-orbitals form a band). By comparing the ener-
gies of Cu atom ECu++ = −36.83 eV, and Zn atom
EZn++ = −39.722 eV, we estimate U0 ' −2.89 eV.
Therefore, Zn atom plays the role of a strong attrac-
tive potential in Cu-O lattice. Location of the level at
negative energy is consistent with the d10 configuration.

Ni++ has a 3d8 shell, and a spin S = 1 ground state.
Therefore, to describe the effect of Ni impurity we need to
account for both potential (U0) and magnetic (J) scatter-
ing. We again estimate the energy U0 by taking the differ-
ence between atomic energies using ENi++ = −35.17 eV
to find U0 ' 1.66 eV for Ni. Compared to Zn, its
potential is weaker and repulsive. Similar conclusions
about the sign and strength of Zn and Ni impurities
were reached recently in a more sophisticated three-band
model (Xiang et al., 2002).

For detailed comparison of the results from model cal-
culations with the experimental data, the band structure
effects need to be well understood. Ultimately we need a
realistic band structure calculations with impurities for
these complex materials.

VIII. SINGLE IMPURITY BOUND STATE IN A
PSEUDOGAP STATE OF TWO-DIMENSIONAL METALS

A. General remarks on impurities in a pseudogap state

A natural question to address is whether superconduc-
tivity, or even any off-diagonal long range order are re-
quired for a resonance state, and we address this in the
experimentally relevant context of the cuprates. Many
experiments (Loram et al., 2000; Norman et al., 1998;
Renner et al., 1998) show that in high-Tc systems the
electronic density of states near the Fermi surface is
suppressed above the superconducting transition tem-
perature Tc, but below a characteristic temperature T ∗.
The energy range of this suppression, ∆PG, is known
as the pseudogap (PG), and its origin is hotly debated,
see (Timusk, 2003; Timusk and Statt, 1999). Scenar-
ios for this anomalous phenomenon include precursors to
superconductivity, such as pre-formed pair with phase-
fluctuations (Emery and Kivelson, 1995), Bose-Einstein
condensation of Cooper pairs (Chen et al., 1998), as well
as various competing orders not related to superconduc-
tivity, such as the time-reversal-symmetry-breaking cir-
culating current (Varma, 1999), and unconventional d-
density-wave (DDW) (Chakravarty et al., 2001). The
latter is a variant of the staggered flux state (Affleck and
Marston, 1988; Hsu et al., 1991; Marston and Affleck,
1989). In the first scenario, the “normal” state contains
preformed Cooper pairs, but the phase fluctuations of
the pairing field destroy the long range order, that is,
the bulk superconductivity. Since at the onset the pair-
ing field has d-wave symmetry in the momentum space,
a d-wave pseudogap follows.

Here, instead of discussing the origin of the PG, we
model it phenomenologically in some of these scenarios,

and study the electronic properties around a single im-
purity. If an STM measurement is done at different tem-
peratures, there are two possibilities for the evolution of
impurity resonance at T > Tc: a) it gradually broad-
ens and disappears when the superconductivity vanishes,
as in conventional superconductor; and b) the resonance
broadens but survives above in the PG state. It was ar-
gued experimentally (Krasnov et al., 2000; Loram et al.,
2000) that in the underdoped cuprates the superconduct-
ing gap and PG are separate phenomena, and we show
below that in this case the resonance survives above Tc.
We find that its position and width of the depend on both
the impurity scattering strength and the PG energy scale.

Our simplest model of the (unrelated to superconduc-
tivity) pseudogap is a metallic state with linearly vanish-
ing DOS around the Fermi energy, but no off-diagonal
order, see Fig. 9. This simplification allows analytical
calculations, and provides a “reference point” for the im-
purity state in the PG regime. Once again we focus on
the Zn substitution for Cu, and use the T -matrix ap-
proach. We find that the depletion of the DOS alone
is sufficient to produce a resonance near a nonmagnetic
impurity.

The analysis is quite general, and is similar to that of
Sec.V and (Balatsky et al., 1995). The states generated
by the impurity are given by the poles, Ω, of the T matrix:

g0(Ω) =
1
U0

. (8.1)

This is an implicit equation for Ω(U0), and complex solu-
tions indicate the resonant nature of the state. To solve
it, we need the unperturbed local Green’s function on
the impurity site, g0(E) = g′0 + ig′′0 , where the imaginary
part, g′′0 (ω) = −πN0(ω), and N0(ω) is the bulk DOS.

Measurements of the electronic specific heat by Lo-
ram et al. (Loram et al., 2000) show that the pseudo gap
opens below hole doping pcrit ∼ 0.19 holes/CuO2, and
has a V -shape energy profile. Guided by these data, we
assume that the low energy electronic states are partially
depleted, so that N0(ω) = N0|ω|/∆PG for |ω| ≤ ∆PG,
and N0(ω) = N0 for ∆PG < |ω| < W/2 with W the
bandwidth, see Fig. 10(a). We use this DOS to generate
solutions of Eq. (8.1). Clearly, the precise position and
the width of the resonance depend on the specific form
chosen for N(ω) (in our case linear). Results for other
forms of N(ω) are very similar. 4

Using this DOS for g′′0 and invoking the Kramers-

4 We argue that the appearance of the intragap impurity
state is a robust feature of any depleted DOS around the
Fermi surface. We considered a model with N0(ω) =
N0[a + (1 − a)ω2/∆2

PG], which to a similar resonant
state at Ω = −∆PG(1 + iπaN0U0)/(4N0U0(1− a−∆PG/W ))
≈ −∆PG(1 + iπaN0U0)/(4N0U0(1− a)) when ∆PG/W ¿ 1..
For a fully gapped DOS, N(ω) = N0 for |ω| ∈ [∆PG, W/2] and
zero otherwise, the resonant state is at Ω = −∆PG/(2U0N0).
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FIG. 9 An impurity state in a high Tc superconductor: (a)
The DOS in the pseudogap regime used in this article (see
also [11]) and (b) the DOS in the superconducting state as
was used in [1]. In both phases there is a resonant state.

Kronig relation, see e.g. (Mahan, 2000),

g′0(ω) =
1
π

∫ ∞

−∞
dω′g′′0 (ω′)P

(
1

ω′ − ω

)
, (8.2)

with P the Cauchy’s principal value, we find

g′0(ω) = −N0 ln

∣∣∣∣∣
W
2 − ω
W
2 + ω

∣∣∣∣∣ + N0 ln
∣∣∣∣
∆PG − ω

∆PG + ω

∣∣∣∣

− N0
ω

∆PG
ln

∣∣∣∣
∆2

PG − ω2

ω2

∣∣∣∣ . (8.3)

Fig. 10(b) shows g′0(ω) together with 1/U0 to obtain a
graphical solution as in Fig.3. For 2U0N0 > 1, Eq. (8.1)
has four solutions. Since the width of the resonance is
proportional to |Ω|, only the solutions with |Ω| close to
zero are sharp. Expanding in ω in Eq. (8.3) we find

g0(Ω) = −2ΩN0

∆PG

[
ln

∣∣∣∣
∆PG

Ω

∣∣∣∣ + 1− iπ sgn(U0)
2

]
=

1
U0

,

(8.4)
This equation can be solved exactly in terms of Lam-
bert’s W functions, 5 which, to logarithmic accuracy in

5 The exact solution in terms of a Lambert’s W function,
Lw(−1, x), defined from Lw(x) exp[Lw(x)] = x, is Ω =
−∆PGsgn(U0) exp{Lw(−1,−sgn(U0) exp(iπ/2− 1)/(2N0U0)) +
1− iπ/2}.

ln |2U0N0| > 1, gives Ω = Ω′ + iΩ′′ with 6

Ω′ = − ∆PG

2U0N0

1
ln |2U0N0|

[
1− 1

ln |2U0N0|
]

, (8.5)

Ω′′ = − π∆PG sign(U0)
4U0N0 ln2 |2U0N0|

. (8.6)

Here Ω′ is the energy position and Ω′′ the decay rate.
Using Eq.(8.5) for Zn doping in the cuprates, and

taking N0 = 1 state/eV, ∆PG ∼ 300K ∼ 30meV
and the scattering potential U0 ≈ ±2eV, we estimate
Ω ∼ ±2meV ∼ ±20K as was found by Loram et al. (Lo-
ram et al., 2000). This value is close to the Zn resonance
energy ω0 = −16K, seen in the superconducting state
(Pan et al., 2000b). By combining these results with
the band-structure arguments (Martin et al., 2002), we
conclude that the Zn impurity in Bi2212 is strongly at-
tractive, with U0 ∼ −2eV. This value, as we see below,
is modified due to the particle-hole asymmetry expected
in the doped cuprates.

A similar calculation can be done in the absence of
particle-hole symmetry. The simplest way to introduce
the asymmetry is by making the upper and lower cut-
offs in the DOS different, i.e. keep the bare density of
states featureless, but move the chemical potential, µ,
away from the middle of the band. The pseudogap is
still centered at the chemical potential. Therefore the
calculation proceeds as above with sole change in the
first logarithmic term of Eq. (8.3):

−N0 ln

∣∣∣∣∣
W
2 − µ− ω
W
2 + µ + ω

∣∣∣∣∣ (8.7)

Neglecting the frequency ω relative to chemical potential
µ and assuming that µ is small relative to the bandwidth,
we find that the asymmetric case can be mapped onto the
symmetric situation by the substitution

1
U 0

→ 1
U 0

− 4N0µ

W
. (8.8)

The effect of the asymmetry can be estimated. In
cuprates, for 20% hole doping, µ ∼ −(1/5)W/2 =
−W/10. Hence, the modified value for the Zn impurity
strength in Bi2212 can be obtained from the symmet-
ric result, 1/U∗ = 1/U0 + 4N0µ/W . The new value is
U∗ ∼ −1 eV , which is a strongly attractive potential, as
is expected from the band structure arguments.

The solution for the resonance state involves determin-
ing the energy position and the width of the resonance,
as well as the real space shape of the impurity state. The
energy of the resonance for a local impurity potential,

6 The simplest model for thermal broadening is to assign the tem-
perature dependent width: Thermal broadening at high temper-
atures T > Tc substantially broadens the impurity resonance
peak Ω′′(T ) =

p
(Ω′′(T = 0))2 + T 2.
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FIG. 10 (a) The density of states N(ω) = −g′′0 (ω)/π for the
model discussed in text. (b) The real part g′0(ω) of Green’s
function together with 1/U0 and U0 positive. Ω′ is the real
part of the solution of the equation g0(Ω) = 1/U0. (c) The im-
purity induced resonance at Ω′ = −∆PG/2U0N0 ln(2U0N0).
The other three solutions of Eq. (8.1) are much broader, and
are not depicted. All the plots are at the impurity site. From
Kruis, Martin and Balatsky (Kruis et al., 2001)

U0, depends only on the local propagator g0(ω). Hence
the knowledge of the DOS (related to the imaginary part
of the on-site propagator) is sufficient to determine (via
Kramers-Kronig relations) the real part of g0, and find
the energy of the impurity state. On the other hand, to
determine the real space image of the resonance, one re-
quires a more detailed knowledge of the state and its the
Green’s function. Quite generally, for a d-wave-like PG
with nearly nodal points along the (±π/2,±π/2) direc-
tions, the impurity resonance is four-fold symmetric, sim-
ilar to superconducting solutions (Balatsky et al., 1995).
However, any detailed calculation requires a more specific
model for the PG state. Some of these are considered be-
low.

B. Impurity state in pseudogap models

a. D-density wave (DDW). This model postulates the
mean field Hamiltonian (Chakravarty et al., 2001)

H0 =
∑

ij,σ

[−tij + (−1)iiWij ]c
†
iσcjσ − µ

∑

i,σ

c†iσciσ . (8.9)

with the order parameter Wij defined at the bonds of
a square lattice, Wi,i±x̂ = W±x̂ = W0

4 and Wi,i±ŷ =
W±ŷ = −W0

4 , and zero otherwise. The prefactor i =
√−1

indicates that the DDW state breaks the time reversal
symmetry. In the momentum space,

H0 =
∑

k,σ

ξkc†kσckσ +
∑

k,σ

iWk[c†kσck+Q,σ − c†k+Q,σckσ] .

(8.10)
We take the single particle energy ξk from Eq. (7.18) with
t′ = 0 for simplicity. For kx and ky in the first Brillouin
zone, the DDW gap is d-wave-like,

Wk =
W0

2
(cos kx − cos ky) . (8.11)

DDW order breaks the symmetry with respect to
translations by a lattice constant, a, along x or y, but
preserves translations by

√
2a along the diagonals of the

square lattice. Therefore it is convenient to rewrite the
Hamiltonian in the reduced Brillouin zone. Introduc-
ing a two-component operator Ψ†kσ = (c†kσ, c†k+Q,σ) with
Q = (π, π), we find

H0 =
∑

k∈rBZ,σ

Ψ†kσ

(
ξk i2Wk

−2iWk ξk+Q

)
Ψkσ , (8.12)

where rBZ denotes the reduced Brillouin zone.
In analogy to the Gor’kov-Nambu notation, we intro-

duce the matrix Green functions (cf. Sec.II.C)

Ĝ(0)(k; τ) =

(
G(0)

11 G(0)
12

G(0)
21 G(0)

22

)
, (8.13)

where

G(0)
11 (k; τ) = −〈Tτ [ckσ(τ)c†kσ(0)]〉 , (8.14a)

G(0)
12 (k; τ) = −〈Tτ [ckσ(τ)c†k+Q,σ(0)]〉 , (8.14b)

G(0)
21 (k; τ) = −〈Tτ [ck+Q,σ(τ)c†kσ(0)]〉 , (8.14c)

G(0)
22 (k; τ) = −〈Tτ [ck+Q,σ(τ)c†k+Q,σ(0)]〉 .(8.14d)

From the Hamiltonian Eq. (8.12), using equation of mo-
tion for the operators ckσ and c†kσ, and by performing a
Fourier transform with respect to τ , we find

Ĝ(0)(k; iωn) =

(
iωn − ξk −2iWk

2iWk iωn − ξk+Q

)−1

. (8.15)
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FIG. 11 DDW-DOS for the clean case (solid line) and in the
presence of a non-magnetic impurity with U0 = 1 eV: (1) DOS
on the impurity site, (2) DOS on the nearest-neighbor site,
and (3) DOS on the next-nearest-neighbor site. The other
parameter values are: t = 300meV , W0 = 25meV , t′ = 0,
and µ = 0. From Morr (Morr, 2002).

To solve for the bound state we need the Green’s func-
tion in real space,

G(0)(i, j; iωn) =
1
N

∑

k∈rBZ

eik·Rij [G(0)
11 (k; iωn) + G(0)

22 (k; iωn)

+e−iQ·RjG(0)
12 (k; iωn) + eiQ·RiG(0)

21 (k; iωn)] ,

(8.16)

where Ri are the lattice vectors and Rij = Ri − Rj .
From Eqs. (8.15)-(8.16), the local Green’s function is

G(0) =
1
N

∑

k∈rBZ

2iωn − ξk+Q − ξk

(iωn − ξk)(iωn − ξk+Q)− 4W 2
k

.

(8.17)
We analyze now the scattering on a single non-

magnetic impurity in the DDW state. Without loss of
generality, hereafter we assume that the impurity is lo-
cated at the origin. The poles of the T -matrix give the
energy of resonance state, i.e. once again

G(0)(0, 0; ω + i0+) =
1
U0

. (8.18)

The real space map of the resonant states is manifested
in the local density of states:

Ni(ω) = − 2
π

ImG(i, i;ω + iδ) . (8.19)

The numerical results are displayed in Figs. 11 and 12.
As shown in these figures, the electronic excitation spec-
trum around the impurity in the DDW state is very sen-
sitive to the band structure. For t′ = 0 and at the half
filling (µ = 0), the electron density of states of a pure
DDW system vanishes at the Fermi energy. Therefore in

FIG. 12 (a) Fermi surface in the DDW state with t′ = −0.3t,
µ = −0.91t (hole-doping of 10%) and W0 = 25 meV. The
hole pockets are centered around (±π/2,±π/2). (b) DOS in
the DDW state with the same band parameters as in (a),
for the clean case (solid line) and in the presence of a non-
magnetic impurity with U0 = 1 eV: (1) DOS on the impurity
site, (2) DOS on the nearest-neighbor site, and (3) DOS on
the next-nearest-neighbor site. Inset: SC DOS for the same
band parameters as in (a). From Morr (Morr, 2002)

the presence of an impurity, resonance states appear at
low energies. With t′ = 0 but the system doped away
from the half filling, the resonant peak in the LDOS is
shifted away from the Fermi energy. This is because the
energy at which the band DOS vanishes no longer coin-
cides with the Fermi energy. For more realistic parame-
ter values, the density of states in the clean limit shows
essentially no reduction at low energies, and the LDOS
near the impurity does not exhibit any signature of a res-
onance state. These results were independently obtained
by Zhu et al. (Zhu et al., 2001), Wang (Wang, 2002), and
Morr (Morr, 2002). The quasiparticle states in the DDW
state with a finite concentration of non-magnetic impu-
rities were investigated by Ghosal and Kee (Ghosal and
Kee, 2004).

b. Phase-fluctuation scenario: We now discuss the
impurity state in a phase-fluctuating superconductor,
see (Wang, 2002) for details. The mean field Hamiltonian
for a d-wave superconductor on a square lattice is

H =
∑

ij

Ψ†i

(
−tij − µδij −∆ij

−∆∗
ij −(−tji − µδij)

)
Ψj ,

(8.20)
where Ψ†i = (c†i↑ , ci↓) is the Nambu spinor, ∆ij is defined
on the bonds in analogy to Sec. VII.C, and its phase is
allowed to fluctuate, while its amplitude is fixed,

∆ij =
∆0ηij

4
eiϕij = ∆̃ije

iϕij . (8.21)
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For d-wave pairing ηij = 1 (−1) for x (y) direction bonds
and the phase ϕij = (ϕi + ϕj)/2. Spatial variation of
the phase gives rise to the superfluid flow of the Cooper
pairs. By performing a gauge transformation,

Ψ̃i = e−iϕiσ3/2Ψi (8.22)

where σ3 is the Pauli matrix, we transfer the phase from
the pairing field to the hopping,t, so that

H̃ =
∑

ij

Ψ̃†i

(
−t̃ij − µδij −∆̃ij

−∆̃∗
ij −(−t̃ji − µδij)

)
Ψ̃j ,

(8.23)
where t̃ij = tije

−i(ϕi−ϕj)/2. Assuming that the length
scale of the phase variation (the London penetration
depth) is much greater than the Fermi wavelength, we
can define the phase for the Cooper pair, ϕi = 2qs ·Ri,
where qs is the average momentum per electron in the
superfluid state. This ansatz gives the Green function

Ĝ(0)(k; qs; iωn) =

(
iωn − ξk+qs

−∆k

−∆∗
k iωn + ξk−qs

)−1

,

(8.24)
for a pure systems, where ∆k = ∆0

2 (cos kx − cos ky) and
the ξk is still given by Eq. (7.18).

In the presence of a non-magnetic impurity at site i =
(0, 0), the Green function becomes

Ĝ(i, j; qs; iωn) = Ĝ(0)(i, j; qs; iωn) + Ĝ(0)(i, 0; qs; iωn)

×T̂ (qs; iωn)Ĝ(0)(0, j; qs; iωn) , (8.25)

T̂−1(iωn;qs) = τ̂3/U0 − Ĝ(0)(0, 0; qs; iωn) . (8.26)

For a fixed qs, the LDOS at site i is given by

N(i; qs; ω) = −(2/π)ImG11(i, i; qs; ω + i0+) . (8.27)

Averaging over the fluctuating phases in ∆ij is equiv-
alent to taking an average over qs. If the fluctu-
ations are thermal, the statistical distribution of qs

is Gaussian, as in the Kosterlitz-Thouless (KT) the-
ory (Kosterlitz and Thouless, 1973, 1974; Sheehy et al.,
2001), ρ(qs) = e−q2

s/2nv/
∑

qs
e−q2

s/2nv , where nv =
exp[−

√
aTc/(T − Tc)] is the vortex concentration. In the

continuum limit,
√
〈q2

s〉 =
√

nv. The averaged LDOS is
caculated as N(i; ω) = 〈N(i; qs;ω)〉.

The results are shown in Fig. 13. For small nv, the
resonance peak is sharp and similar to that in the super-
conducting state (nv = 0). As nv is increased, the peak
is broadened and its height is reduced until the spectrum
at low energies becomes featureless.

We can therefore compare the predictions of different
models. In the phase fluctuation scenario, the electron
excitation spectrum around the impurity is very sensi-
tive to how far the temperature is from the actual Tc. In
contrast, in the normal-state ordering scenario, the res-
onance states are not sensitive to the temperature up
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FIG. 13 Local density of states with ∆0 = 0.68t, µ =
−0.3t,t′ = 0 and U0 = 100t. (a) N(rnn, ω) versus ω. Solid
lines: nv = 10−6, 10−4, 10−3, and 5 × 10−3 with decreasing
peaks. The dotted line is the LDOS at nv = 0 and U0 = 0
for comparison. (b) N(r, 0.05t) at nv = 0. The impurity is at
the center. (c) The same as (b) for nv = 5× 10−3. The gray
scale is the same in (b) and (c). From Wang (Wang, 2002).

to the closing of the pseudogap. Notice that the en-
ergy of the resonance state in the phase fluctuation sce-
nario is not sensitive to the doping while in the state
with a normal (particle-hole) ordering it shifts with the
doping. Generally, if superconducting fluctuations are
present, a satellite peak appears at the opposite bias due
to the particle-hole nature of the Bogoliubov quasiparti-
cles. The relative magnitude of the particle and the hole
parts of the impurity spectrum can be used to determine
the extent to which the PG is governed by the super-
conducting fluctuations. For fully non-superconducting
PG (e.g., the DDW state), there is no counterpart state.
Combined with other proposals (Janko et al., 1999; Mar-
tin and Balatsky, 2000), study of the impurity resonances
can help to better understand the mysterious PG state.

IX. SCANNING TUNNELING MICROSCOPY RESULTS

A. STM results around a single impurity

Experimental attempts to detect and accurately re-
solve the sub-gap features in the density of states in su-
perconductors with impurities have a long history. Their
signatures were found early on in the planar junctions
doped with magnetic impurities (Dumoulin et al., 1975,
1977), but a direct observation using scanning tunneling
spectroscopy (STS) only became possible in late 1990’s.
Yazdani and co-workers (Yazdani et al., 1997) deposited
adatoms, Mn, Gd and Ag, on the (110)-oriented surface
of a superconducting Nb sample, and examined the elec-
tronic structure around them. Figure 14 shows the tun-
neling spectra. The main findings are: (1) The local
density of states is essentially identical in the vicinity of
Ag impurity atoms and far away from them. This is con-
sistent with the belief that Ag is non-magnetic; (2) Near
magnetic Mn and Gd atoms the LDOS is enhanced at
the length scale of 10Å, at energies below the Nb super-
conducting gap, indicating that the impurity states are
bound; (3) The LDOS spectra are asymmetric about the
Fermi energy. Within the BdG theory, the authors used a
two-parameter magnetic impurity model, where the elec-
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FIG. 14 Left panel: The dI/dV spectra measured near (A)
Mn, (B) Gd, and (C) Ag atoms and far away from the im-
purity. Right panel: Constant-current topographs and simul-
taneously acquired dI/dV images show the spatial extent of
the bound state near Mn and Gd adatoms. (A) Constant-
current (32 Å by 32 Å) topograph of a Mn adatom. (B)
Image of dI/dV near the Mn adatom, acquired simultane-
ously with the topograph in (A). Reduced dI/dV (dark areas)
marks the bound state. The contrast is reversed because dc
bias voltage was chosen well above the energy of the bound
state, and the resonance affects dI/dV only indirectly. (C)
Constant-current (32 Å by 32 Å) topograph of a Gd adatom.
(D) Image of dI/dV near the Gd adatom, acquired simulta-
neously with the topograph in (C). From Yazdani (Yazdani
et al., 1997).

trons are coupled with the impurity both through a mag-
netic exchange interaction J and a nonmagnetic potential
scattering U . The obtained results were consistent with
the Yu-Shiba-Rusinov prediction and more recent theo-
ries (Yazdani et al., 1997), and fit the experimental data.
However, the model calculation required the value of J
of the order of 4 eV, in the strong coupling limit, and
failed to capture the detailed spatial dependence of the
spectra around Gd site.

Byers, Flatte, and Scalapino (Byers et al., 1993) were
the first to suggest the use of STM to study the local
effects of impurities in the superconducting state. Bal-
atsky and co-workers predicted (Balatsky et al., 1995;
Salkola et al., 1996) that quasiparticle resonance states
are induced around a nonmagnetic impurity in a d-wave
superconductor, in striking contrast to s-wave systems.
The pioneering STM experiments to test these predic-
tions were carried out in the nominally pure samples of
the high-Tc cuprate Bi2Sr2CaCu2O8+δ (BSCCO) by the
groups of Eigler (Yazdani et al., 1999) and Davis (Hud-
son et al., 1999). The STM spectra clearly showed the en-
hancement of the local density of states near the zero bias
near the chemically induced defects. These experiments
provided strong evidence for the existence of low-energy
quasiparticle resonance states around single nonmagnetic
impurities, as predicted theoretically. The asymmetry
or splitting of the measured resonance was conjectured
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FIG. 15 Differential tunneling spectra taken at the Zn-atom
site (open circles) and a location far away from the impurity
(filled circles). Note that even on the impurity site one has
peaks at both positive and negative bias albeit of very differ-
ent magnitude that are reflection of the particle hole character
of the impurity resonance. To fit the data one can use a simple
potential scattering model with essentially unitary scattering
phase shift θ = 0.48π. Phase shift is related to a impurity
potential U0 via simple formula: cot θ = 1

πNF U0
. From Pan

et al. (Pan et al., 2000b).

FIG. 16 Differential conductance spectra above the Ni atom
and at several nearby locations. Differential conductance
spectra obtained at four positions near the Ni atom showing
the maxima at eV = ±Ω1. Intensity as a function of position
relative to impurity site reverses upon change of the bias sign.
This effect is explained as a result of particle and hole com-
ponents of the impurity state. From Hudson et al. (Hudson
et al., 2001).

to result from breaking of the particle-hole symmetry by
the defects locally or from the asymmetry of the underly-
ing realistic band structure of BSCCO (Flatte and Byers,
1998; Zhu et al., 2000a). However, in these experiments,
the location in the crystal and the identity of these scat-
tering centers were unknown. Moreover, since the en-
hancement of the LDOS at these scattering centers is
not large, and since the coherence of high-Tc supercon-
ductors is short, it was difficult to investigate in detail
the LDOS at the atomic scale.

STM studies on the Bi2Sr2Ca(Cu1−xZnx)2O8+δ single
crystals intentionally doped with x = 0.6% Zn were re-
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FIG. 17 High-spatial-resolution image of the differential tun-
neling conductance at a negative tip voltage bias eV =
−1.2 meV at a 60 × 60Å2 square. Also shown d-wave gap
nodes orientation and lattice sites to indicate that impurity
state is registered to lattice. From Pan et al. (Pan et al.,
2000b).

ported by the Davis’ group (Pan et al., 2000b). Zn2+

has a filled d-shell, and hence acts as a strong poten-
tial scatterer for holes in the CuO2 plane. Therefore,
according to the predictions of Balatsky et al., the quasi-
particle resonance is expected close to the Fermi energy.
To search for it, Pan et al. mapped the differential tun-
neling conductance at zero bias over a large area, and
found randomly distributed sites corresponding to high
LDOS, which they associated with Zn dopants. Typical
tunneling spectrum at the center of such a site is shown
in Fig. 15: it exhibits a very strong peak (up to six times
greater than the normal-state conductance) at the energy
Ω = −1.5± 0.5 meV. At the same location, the intensity
of the superconducting coherence peak is strongly sup-
pressed, indicating almost complete local destruction of
superconductivity. Both features are in agreements with
the predictions for quasiparticle scattering off of a strong
nonmagnetic impurity in a d-wave superconductor.

High intensity of the intra-gap peak allowed close in-
spection of the electronic structure around the Zn impu-
rity. As shown in Fig. 17, the differential conductance
map at Ω = −1.5 meV exhibits two novel features. First,
the intensity is the strongest directly at the impurity site,
and local maxima and minima occur at the sites belong-
ing to the different sublattices with respect to the impu-
rity. Second, the intensity decays much faster along the
nodal direction than along the bond direction. These fea-
tures are at variance with the theory based on a purely
potential scattering, which predicts vanishingly small in-
tensity at the impurity near unitarity limit. The discrep-
ancy motivated additional studies. One approach focused
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FIG. 18 Tunneling DOS for tunneling on Ni impurity site.
Note that there are always states at opposite bias as well.
The peak intensity is largest on either positive or negative
bias depending on the position. To fit the data one need to
use both U0 and J . From Hudson et al. (Hudson et al., 2001).

on the Kondo resonance as a contribution to the zero-bias
peak (Polkovnikov et al., 2001; Zhang et al., 2001; Zhu
and Ting, 2001a); this is discussed in Sec. XI. An alter-
native explanation considers the tunneling path via the
BiO layer which is exposed exposed when the sample is
cleaved (Martin et al., 2002; Zhu and Ting, 2001b; Zhu
et al., 2000c); this physics is outlined later in this section.

When Ni atom is substituted for the plane Cu in
BSCCO, it is in the 3d8 state, and therefore has spin
S = 1. The potential part of scattering is also present,
but is much weaker than for Zn. The experimental
study of Ni-doped samples was reported in (Hudson
et al., 2001), where two resonance states were found,
as shown in Fig. 18. Observation of two distinct res-
onance energies is in agreement with theoretical mod-
els that include both nonmagnetic and magnetic scat-
tering (Salkola et al., 1997; Tsuchiura et al., 2000), and
predict spin-resolved states at the energies ±Ω1,2 given
by Eq. (7.13) (Salkola et al., 1997). In experiment
Ω1 = 9.2± 1.1 mev and Ω2 = 18.6± 0.7 meV. Using the
value for the superconducting energy gap ∆0 = 28 meV,
one finds NF U = −0.67 and NF J = 0.14. This im-
plies that the scattering on Ni atoms is dominated by
potential interactions, even though the impurity has a
magnetic moment. The experiment also showed that the
intensity at the gap edge in the tunneling conductance
directly at the Ni impurity site is almost unaffected.

B. Filter

As mentioned above, for strong potential scattering it
is difficult, if not impossible, to produce large intensity
on the impurity site. Indeed, independently of the model,
scattering in the near-unitarity limit produces a node in
the wave function. Yet, experimentally, in the STM im-
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ages the Zn-impurity site is bright (Pan et al., 2000b),
indicating an enhanced low-energy DOS. One possible
explanation of this discrepancy is that the image seen
by STM is not simply the local intensity of the impu-
rity state directly underneath the tip. The sample is
cleaved, and the conduction plane where resonance re-
sides is buried below the exposed layer, so that the tun-
neling occurs predominantly via a particular combination
of the atomic orbitals that allow electron transfer from
the STM tip to the conduction plane. This provides a
“filter” that emphasizes or hides certain features of the
bare LDOS. Martin et al. (Martin et al., 2002) proposed
that intensity seen by STM is a convolution of initial in-
tensity due to impurity scattering and filter function that
accounts for the matrix element of hopping between CuO
planes, tk ∝ | cos kx − cos ky|2.

In the simplified form this idea is based on the essential
role of Copper s-orbitals for interplane tunneling (Ander-
sen et al., 1995; Xiang and Wheatley, 1995). The DOS
near the Fermi surface is dominated by the dx2−y2 or-
bitals of Cu (for simplicity we treat hybridization with
oxygen p-orbitals perturbatively), while the s-orbitals are
far from the chemical potential. However, interplane tun-
neling between the dx2−y2 orbitals in different planes via
the apical oxygen pz shell is prohibited by symmetry,
and therefore must occurs via virtual hopping on the s-
orbitals. Locally, dx2−y2 and s orbitals are orthogonal
on a given site, and the next available s-orbitals are on
the four nearest copper atoms. Therefore electron hops
virtually on to px or py orbitals of nearest O and then
onto Cu s-orbital, as shown in Fig. 19.

It is clear from this figure that the sign of the hopping
amplitude Cu dx2−y2 → O px,y → Cu s is different for
motion along horizontal and vertical directions. Compare
the amplitudes Ai,i+x(y) for the hopping to the Cu site
on the right and that on the top:

Ai,i+x ∝ 〈di|px〉〈px|si+x〉
[Ep − Ed][Es − Ep]

∼ (−1) exp(ikxa)
[Ep − Ed][Es − Ep]

Ai,i+y ∝ 〈di|py〉〈py|si+y〉
[Ep − Ed][Es − Ep]

∼ (+1) exp(ikxa)
[Ep − Ed][Es − Ep]

.

(9.1)

So far we consider plane waves that describe the states
without impurity scattering. It was argued (Martin et al.,
2002) that the same holds for the states produced by
impurity scattering. Quantum mechanical hopping from
one site to its nearest neighbor s-orbital has contributions
from four processes

Atot = Ai,i+x + Ai,i−x + Ai,i+y + Ai,i−y

∼ cos(kxa)− cos(kya) . (9.2)

Again, the second line refers to the pure plane wave to
make contact with the bands structure calculations (An-
dersen et al., 1995). Upon hopping on the s-orbitals
electron moves to the next layer, and retraces its path.
Therefore the net amplitude for the hopping will be pro-

4s2px

2py

3dx2-y2

FIG. 19 The real space image of different orbitals on Cu, near-
est O and nearest Cu sites are shown. Dark orbitals and lobes
represent positive phase of the orbital wavefunction, white
represent negative phase. Quantum mechanical interference
produces the filter effect that changes the distribution of the
impurity state intensity (Martin et al., 2002).

portional to |Atot|2, and has |dx2−y2 | modulations:

|Atot|2 ∝ | cos(kxa)− cos(kya)|2 (9.3)

This particular filter appears in the interplane hop-
ping matrix element obtained within the band structure
calculation (Andersen et al., 1995; Xiang and Wheatley,
1995). However, the Cu s-orbitals are also relevant for
probing an exposed Cu-O layer since the electrons tunnel
from the STM tip predominantly into these states (Misra
et al., 2002). The 4s-orbital-assisted hopping was also ar-
gued to have profound consequences for the experimental
measurement of vortex core states in cuprates (Wu et al.,
2000).

Filter of another type, due to blocking of certain
hopping were considered by Zhu et al. (Zhu et al.,
2000c), who analyzed the local tunneling matrix elements
that connect impurity orbitals to s-orbitals on neighbor-
ing Cu atoms. The net effect is to add probabilities∑

nnδ |Ai,i+δ|2 rather then the interfering amplitudes.
This filter was argued to produce large spectral inten-
sity on an impurity site and to suppress it on nearest
neighbor sites. More recently, the STM data has been
converted to a set of LDOS defined on a two-dimensional
lattice (Wang and Hu, 2004), which allowed for a rigor-
ous comparison between the tight-binding model studies
and the STM experimental data.

An important observation arises from comparing STM
and NMR results on Li doped YBCO superconductor
(Bobroff et al., 2001). Li appears to be a strong scat-
terer, and the maximum intensity of the NMR signal
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comes from the four nearest neighbor Cu sites, hence is
localized near the impurity. This is consistent with the
notion that strongly scattering impurity produces large
density of states on nearest sites. The crucial difference
between NMR and STM is that no electron tunneling is
associated with NMR observation, and therefore it mea-
sures real space distribution of spin. Consequently, NMR
results provide another confirmation, albeit indirect, of
the theory of the scattering resonance.

C. Spatial distribution of particle and hole components

It is clear from comparing the left and right panels of
Fig. 16 that the tunneling intensity is not symmetric with
the bias voltage. On the contrary, the maxima and min-
ima in LDOS map are interchanged: bright spots in the
STS map at a positive bias V correspond to dark spots
at −V , and vice versa. This effect is a general property
of superconductors, and is seen in both s and d-wave
systems (Hudson et al., 2001; Pan et al., 2000a; Yazdani
et al., 1997), see also Sec. X. It results from the interplay
between particle and hole components of the Bogoliubov
quasiparticles, which are “native” elementary excitations
of a superconductor. In the spatial LDOS pattern cre-
ated by the quasiparticle resonance the sites with a large
particle components have large intensity on positive bias
site, while the sites with large hole component are bright
at negative bias, Fig. 20.

Formally, define the amplitudes of particle and hole
amplitudes of the Bogoliubov quasiparticle, un(i) and
vn(i) at site i and for a particular eigenstate n, see
also Eq. (7.12). They obey the normalization condition∑

n |un(i)|2+|vn(i)|2 = 1 at each site. Therefore at a site
where un(i) is large vn(i) is small, and vice versa. Large
un(i) component means that the quasiparticle state is
predominantly electron-like at that site, and the proba-
bility for electron tunneling into superconductor is locally
enhanced. Hence the tunneling intensity at the positive
sample bias is large. At the same site the hole amplitude
|vn(i)| ¿ |un(i)| and the intensity at negative sample
bias is small. Similarly, sites with large hole amplitudes
|vn(i)| are bright at negative bias. It follows that if a
particular intensity pattern is observed at positive bias
(electron tunneling), quite generally, the complementary
pattern is found at negative bias (hole tunneling). This
is simply a consequence of particle-hole mixing in super-
conductors, and lies at the heart of the intensity pattern
change upon switching bias, seen in experiments (Hudson
et al., 2001; Pan et al., 2000a), see Fig. 16.

D. Fourier-transformed STM maps

The spatial dependence of the impurity-induced state
has additional information about the underlying system.
Consider the simple case of a metal surface with an im-
purity atom, see Sec. V. The modifications of the DOS

FIG. 20 Particle and hole components of the impurity wave
function for a magnetic impurity in a s-wave superconduc-
tor. A) Impurity wave function ΨB(r) and B) r2ΨB(r). The
maxima of particle and hole components occur at different
positions. This results in the different image of the impurity
state, seen on positive and negative bias. This effect is a gen-
eral property of a superconductor regardless of the symmetry
of the pairing state. From (Yazdani et al., 1997).

induced by the impurity, Friedel oscillations, vary at the
wave vector kF , and decay with the distance from the
scattering center, see, for example, Eq. (5.12). There-
fore if an area of the surface contains a number of dilute
randomly distributed impurities, the LDOS exhibits a
pattern of standing waves. Fourier transform (FT) the
of the intensity map at a given bias therefore shows pro-
nounced maximum at the Fermi wave vector (or its 2D
slice), and can be used to map out the Fermi surface of
the underlying compound. This technique was pioneered
by Sprunger et al. (Petersen et al., 1998; Sprunger et al.,
1997) for Be, Cu, and other metallic surfaces, and be-
came known as the Fourier-transform STM (FT-STM)
method. In simple cases, the FT-STM directly reveals
the Fermi surface of a metallic band, see Fig. 21.

The technique was recently successfully extended to
the superconducting state of the cuprates (Hoffman et al.,
2002a,b; Howald et al., 2003; McElroy et al., 2003).
In unconventional superconductors the information con-
tained in the FT-STM maps is more extensive than in
metals. In cuprates not all of the experimental features
are understood, and theory generally followed experi-
ment, so that here we review several aspects of the data.
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FIG. 21 Example of FT-STM. a) Be (001) surface, as seen
by STM, with the standing waves (Friedel oscillations) pro-
duced by defects. b) Fourier transform of a) reveals a cut
through the Fermi surface corresponding to the surface states.
From (Petersen et al., 1998; Sprunger et al., 1997)

FIG. 22 A representative set of seven scattering vectors
qi(E) of the ‘octet’ model. Reproduced with permission
from (McElroy et al., 2003).

Enhanced signal in the FT-STM at a wave vector q,
and bias eV = ω, corresponds to a large amplitude
for scattering off of impurity. Qualitatively, this am-
plitude depends on the number of available initial at
final states at a given energy in regions of the Bril-
louin Zone separated by q, i.e. it is proportional to∫

Nk(ω)Nk+q(ω)dk, where Nk(ω) is the momentum de-
pendent DOS. The greater the number of “matching”
pairs of initial and final states, the more likely it is that
a quasiparticle scatters from one of them into the other,
producing a feature in the FT-STM image (we consider
here low temperatures and therefore ignore Fermi fac-
tors). In most metals the density of states is essentially
constant around the Fermi surface. In contrast, in nodal
superconductors the loci of the low-energy excitations
depend on the location of the nodes and the shape of

the Fermi surface. Experiment and analysis for BSCCO
have been first carried out in (McElroy et al., 2003).
At energies below the gap maximum, ω ¿ ∆0, the en-
ergy contours E(k = ω are banana-shaped, as shown in
Fig. 22. The dominant contribution to the density of
states, N(E = ω) ∝ ∫

δ(E(k) − ω)|∇kEk|−1dk arises
from regions of the greatest curvature of E(k), i.e. from
the tips of each banana. Therefore, the primary contri-
butions to N(ω) is from the small regions around eight
wave vectors (octet) kj(E), j = 1, 2, . . . , 8, at the banana
tips (red circles in Fig. 22.)

Consequently, maximal scattering intensity at a given
ω is from one element of the octet to another, simply due
to large DOS of initial and final states. For each kj , there
are seven counterparts for enhanced scattering, produc-
ing a total of 56 scattering wave vectors. Of these, 32 are
inequivalent,and therefore 16 distinct ±q pairs can be de-
tected by Fourier-transformed scanning tunneling spec-
troscopy. The experimental data (McElroy et al., 2003)
were found to be in good agreement with this model. The
samples were not intentionally doped, so that the scat-
tering was on intrinsic disorder. It is important to note
that the model predicts the dispersion of each resonance
wave vector with the energy (bias voltage) that is com-
pletely determined by the underlying Fermi surface and
the shape of the gap, i.e. by the growth of bananas with
energy. The peaks associated with these Friedel oscilla-
tions of quasiparticles scattering on impurities have been
extensively investigated (Byers et al., 1993; Wang and
Lee, 2003; Zhang and Ting, 2003, 2004), and interference
effects from many impurities was analyzed in Capriotti
et al., 2003; Zhu et al., 2004b.

However, the results on the cuprates show features be-
yond the simple Fermi surface resonances. First, it has
been argued that some of the FT features do not dis-
perse (Howald et al., 2003), and that these LDOS modu-
lations should be interpreted by invoking a static (or fluc-
tuating) competing charge- or spin-ordered state (Kivel-
son et al., 2003; Podolsky et al., 2003; Polkovnikov et al.,
2003). The experimentally observed nanoscale inhomo-
geneities (Howald et al., 2001; Lang et al., 2002; Pan
et al., 2001) may also indicate the proximity to such a
state. Furthermore, the electronic states at low energies
in the pseudogap state in BSCCO exhibit spatial modu-
lations with an energy-independent incommensurate pe-
riodicity (Vershinin et al., 2004).

Second, a static Cu-O bond-oriented “checkerboard”
pattern with 4a0 periodicity was found near the vortex
core in the mixed state (Hoffman et al., 2002a). This
charge modulation is consistent with the field-induced
spin-modulation with the period 8a0 observed in neu-
tron scattering (Khaykovich et al., 2002; Lake et al.,
2001, 2002) in other cuprate materials. The “checker-
board” pattern was variously interpreted as the onset of
the competing spin density wave order around the vor-
tex core where the superconductivity is suppressed (An-
dersen and Hedeg̊ard, 2003; Takigawa et al., 2003; Zhu
et al., 2002), the nucleation of the antiferromagnetic or-
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der brought about by local quantum fluctuations of a vor-
tex (Franz et al., 2002), and the crystallization of the d-
wave hole pairs by the magnetic field (Chen et al., 2002).
Similar pattern has also been predicted around a single
strong impurity with induced local moment in the opti-
mally doped cuprates (Chen and Ting, 2003, 2004; Liang
and Lee, 2002; Zhu et al., 2002). These predictions de-
pend on the details of a complete microscopic model that
has not been developed yet.

X. QUANTUM PHASE TRANSITION IN s-WAVE
SUPERCONDUCTORS WITH MAGNETIC IMPURITY

A. Introduction

Here we revisit the well studied problem of a local-
ized classical magnetic moment in a superconductor. We
focus here on one remarkable aspect of this model: the
first-order zero temperature transition that takes place in
an s-wave superconductor as a function of the effective
magnetic moment, J0S, where S is the local impurity
spin and J0 is the exchange coupling between that spin
and the spins of the conduction electrons. In this transi-
tion, the spin quantum number s of the electronic ground
state of the superconductor |Ψ0〉 changes from zero for a
subcritical moment J0 < Jcrit to 1/2 for J0 > Jcrit. The
total spin becomes S ± 1/2 depending on the sign of J0.
Sakurai was the first to point out this transition (Sakurai,
1970), which corresponds to a level crossing between two
ground states as a function of the exchange coupling. In a
singlet superconductor the level crossing occurs between
the state with the screened impurity spin and that with
S unscreened or partially screened. The two states have
different spin quantum numbers, and hence level crossing
is generally allowed. This quantum phase transition is of
the first order and hence is not associated with divergent
time or length scales.

FIG. 23 The local effect of a magnetic moment on the low-
energy spectral density in an s-wave superconductor.

We address the above problem at zero temperature by
using the mean-field approximation within the T -matrix
formulation and utilizing the self-consistent approach,
which takes into account a local gap-function relaxation.

Local Coulomb interaction U breaks particle-hole sym-
metry and leads to an asymmetric spectral density for
the impurity-induced quasiparticle states. Figure 23 il-
lustrates the local effect of a magnetic moment on the
low-energy spectral density in an s-wave superconduc-
tor. Since we limit our considerations to a classical spin,
S À 1, the impurity moment cannot be screened com-
pletely by the quasiparticles. We show that the gross
features of the impurity-induced quasiparticle states in s-
and d-wave superconductors can be qualitatively under-
stood within the non-self-consistent T -matrix formalism.
The transition itself is not restricted to the classical spin:
similar effect is found in a Kondo model, see Sec. XI.

B. Quantum phase transition as a level crossing

The physical picture of the quantum transition follows
from the behavior of the impurity-induced bound state.
The transition results from the instability of the spin un-
polarized ground state. For a large enough value of J0,
the energy of the impurity-induced quasiparticle state
falls below the chemical potential.

In the Yu-Shiba-Rusinov solution for a classical spin,
see Sec. VI, the impurity state always has the energy
below the gap threshold:

Ω0/∆0 =
1− (πJ0SN0)2

1 + (πJ0SN0)2
(10.1)

and the particle (u−1) and hole (v−1) amplitudes at posi-
tive and negative energies. The level crossing and change
of the ground state follow already from this result. Ig-
noring the self-consistency, and using Eq. (10.1), we find
that the transition occurs at

J0 = Jcrit = 1/πN0S (10.2)

For a weak coupling J0 < Jcrit , the ground state of the
superconductor is a paired state of time-reversed single-
particle states in the presence of the impurity scattering,
with the BCS-like ground state wave function:

|Ψ0〉J0<Jcrit ∼
∏
n

[un + vnψ†nψ†−n]|0〉 = |Ψ0〉 (10.3)

Here, since the translational symmetry is broken by the
impurity, we consider the eigenstates of the scattering
problem in the presence of impurity. These states are
labeled by a discrete index n = 1, ...∞ and form the
basis for the Bogoliubov Hamiltonian with an impurity.
The n = 1 state corresponds to an impurity bound state,
localized on impurity site. Index −n correspond to a time
reversal state, i.e. the localized state with opposite spin.
The first excited state above the condensate corresponds,
at J0 < Jcrit, to a single quasiparticle excitation, and its
energy is that of the intragap Yu-Shiba-Rusinov state at
energy Ω0, see Fig. 24.
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FIG. 24 Two variational states are shown schematically. |Ψ0〉
is a standard BCS wave function that contains only paired
particles and has unscreened impurity spin S. |Ψ1〉 is a varia-
tional wave function that describes the formation of the bound
state between particle with the spin opposite to the local spin
( for antiferromagnetic coupling); this state is inherently a
non BCS state and electonic spin quantum number differs by
one unpaired spin compared to |Ψ0〉.

The wave function of this excited state is

|Ψ−1〉J0<Jcrit ∼ γ†−1|Ψ0〉 = |Φ−1〉
|Φ−1〉 = ψ†−1

∏
n>1

[un + vnψ†nψ†−n]|0〉 (10.4)

with standard quasiparticle definitions of γ1 = u1ψ1 −
v1ψ

†
−1, γ†1 = u1ψ

†
1 − v1ψ−1, γ†−1 = u1ψ

†
−1 + v1ψ1, etc,

with u2
n + v2

n = 1. We introduce a notation

|̃Ψ0〉 =
∏
n>1

[un + vnψ†nψ†−n]|0〉, (10.5)

so that |Φ−1〉 = ψ†−1 |̃Ψ0〉. The state γ†1|Ψ0〉 is far above
the superconducting gap and hence is not relevant for
this discussion. Note that |Ψ0〉 is a true vacuum for all
quasiparticles: e.g. γ±1

∏
n>0[un + vnψ†nψ†−n]〉 = 0. 7

This state is a true spin singlet 〈Ψ0|Selectron|Ψ0〉 = 0.
To avoid confusion with impurity spin S we explicitly
indicate that Selectron is the net spin of conduction elec-
trons. Hence if |Ψ0〉J0<Jcrit = |Ψ0〉 is a ground state, the
total spin of electrons is zero, and only the spin of im-
purity counts. The first excited state at energy Ω0 has a
spin 1/2 quasiparticle in it: 〈Φ−1|Sz

electron|Φ−1〉 = −1/2.

7 Here the spin of the state n = 1 is determined by the sign of
exchange coupling J0. We will assume it to be antiferromagnetic.
So the electronic spin of the state n = −1 in Eq. (10.4) is opposite
to the local spin S assumed to be up without loss of generality.
Case of ferromagnetic coupling is similar. Indeed classical spin
solution Eq. (10.1) is symmetric between J0 → −J0 as it contains
only even powers of exchange.

Upon increasing the coupling constant J0 one reaches
the critical value where the energies of the two states
cross, Fig. 25. Beyond that point the excited and the
ground states changes the roles.

|Ψ0〉J0>Jcrit
= |Ψ−1〉 = |Φ−1〉

|Ψ−1〉J0>Jcrit
= |Ψ0〉 (10.6)
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FIG. 25 Energies of two variational states are shown. |Ψ0〉 is
a standard BCS state with energy E0. |Ψ1〉 is a variational
state that describes the formation of the bound state between
particle with the spin opposite to the local spin with energy
E1. Level crossing between states with different symmetry
occurs at some critical value of the coupling Jcrit. This is
an example of a first order quantum phase transition with no
divergent length or time scale associated with it.

A clear way to see this quantum phase transition is via
examining the energy levels as a function of J0/Jcrit. For
variational wavefunctions |Ψ0,−1〉 we define the respec-
tive energies as expectation vales of the Hamiltonian:

E0,−1(J0/Jcrit) = 〈Ψ0,−1|H|Ψ0,−1〉 (10.7)

Energy of the first excitation is then simply

Ω0(J0/Jcrit) = E−1 − E0, J0 < Jcrit

Ω0(J0/Jcrit) = E0 − E−1, J0 > Jcrit (10.8)

There are several implications of this result. Firstly,
the ground state of superconductor with a magnetic im-
purity in the strong coupling limit is a non-BCS state:
there is one unpaired occupied single particle state in
the ground state. In contrast, all states are paired in the
BCS theory. A similar result was observed for a Kondo
screening in superconductor (Sakai et al., 1993). One
can easily understand the result by considering a strong
coupling limit J0N0 À 1, when, long before any super-
conducting correlations are established, a single electron
state is bound to the impurity site. This is equivalent
to the strong coupling limit of Kondo screening. In our
case the bound electron partially screens the large im-
purity spin. For spin S = 1/2 the screening is complete
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and the state is a singlet (Sakai et al., 1993). There-
after a superconducting state emerges with one unpaired
electron bound to the impurity; it is stabilized by the
energy balance between superconducting and magnetic
energies: Single electron state bound to a local spin yield
energy gain ∼ J0 large compared to the pairing energy
∆0. The crossing point and related quantities are shown
in the Fig. 26: This level crossing point corresponds to a
quantum phase transition.

FIG. 26 a) The bound-state energy Ω0, b) the spectral weight
of the pole Z± for positive and negative energies in units of
N0J0, N0 = NF , c) the spin polarization 〈s(r = 0)〉, and d)
the gap function ∆(r = 0)/∆0 at the impurity site r = 0 as a
function of J0 in the s-wave superconductor. Lines denote the
T matrix results for the uniform order parameter and symbols
the self-consistent mean-field results on a square lattice at
half filling. The quantities of the impurity-induced intragap
quasiparticle state belonging to the branch J0 < Jcrit are
denoted by solid lines and solid symbols, whereas those ones
belonging to the branch J0 > Jcrit are marked by dashed lines
and open symbols. Taken from (Salkola et al., 1997).

The crossing point occurs exactly at the critical point
of Eq. (10.1) only in a non-self-consistent treatment
where single particle levels provide the only contribu-
tion to total energy. The true phase transition occurs
slightly earlier. The gap suppression and quasiparti-
cle interaction also contribute to free energy and, in
the self-consistent mean-field approximation, the order-
parameter relaxation shifts Jcrit downwards and the en-
ergy of the impurity-induced bound state does not reach
zero when a first-order transition between the two ground
states occurs. In practice the analytical results are within
10 percent of the numerical results obtained in a self-
consistent treatment (Salkola et al., 1997). In contrast,

a d-wave superconductor has no quantum transition for
any value of the magnetic moment when its quasiparticle
spectrum in the normal state has particle-hole symmetry.
The absence of the transition follows from the behavior
of the impurity-induced quasiparticle states which are
pinned at the chemical potential for an arbitrarily large
magnetic moment, see Sec. VII. However, if particle-hole
symmetry is broken or if the pairing state acquires a small
s-wave component, the transition is again possible for a
large enough moment. The impurity moment induces
two virtual-bound states which have four-fold symmetry
and extend along the nodal directions of the energy gap.

C. Particle and hole component of impurity bound state

In this section we show that the excited states inside
the gap in superconducting state appear in pairs at pos-
itive and negative energies. This is a direct consequence
of the fact that natural excitations are Bogoliubov exci-
tations. Particle and hole coefficients of the excited state
|Ψ−1〉J0<Jcrit are given by the u and v components of
the quasiparticle operators γn, see Sec. II. To be specific
we confine subsequent discussion to s-wave case, however
the results are applicable to a superconducting state of
any symmetry.

Consider two independent processes: a) electron at en-
ergy Ω0 and spin down, n = −1 and b) hole with spin up,
n = 1 injected in superconductor with the same energy
Ω0. Hole creation means that an electron with spin up
is extracted from superconductor. In experiment, this is
achieved by reversing the bias of the STM tip, and it cor-
responds to the negative energy axis. Variational wave
functions that describes these processes are

ψ†−1|Ψ0〉J0<Jcrit = −u1|Φ−1〉,
ψ1|Ψ0〉 = v1|Φ−1〉. (10.9)

Here, to be specific, we consider the case of J0 < Jcrit.
This illustrates the point that in BCS like ground state
the particle excitation with energy Ω0 and hole excitation
with negative energy −Ω0, aside from irrelevant normal-
ization factors, is the same excited state, namely |Φ−1〉.
Therefore the poles in the density of states ( and the con-
tributions to the electronic LDOS) always come in pairs
at positive and negative energies. The true quasiparti-
cles in superconducting state are Bogoliubov excitations
γn that have a finite component of particle and hole with
amplitudes un and vn. The strength of the electron ab-
sorption and emission process is controlled by the coher-
ence factors. This is true for a BCS superconductor even
without impurities. For the case at hand, the impurity
states are distinct from the continuum. The two poles
at ±Ω0 are part of the same physical excitation. The lo-
cal spectral function A1(r, ω) = −ImG11(r, ω)/π at the
impurity site is

A1(ω) = Z+δ(ω − Ω0) + Z−δ(ω + Ω0) (10.10)
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and the relative strength of the particle and hole com-
ponents is Z+ ∼ u2

−1 and Z− ∼ v2
−1, so that the net

strength of the poles Z+ + Z− >= 1 as it should for
a physical excitation. For more details and references
reader is referred to (Salkola et al., 1997).

Analysis for J0 > Jcrit is more involved. The ground
state wave function is now |Φ−1〉. Injection of an electron
with spin opposite to the spin of the bound state and
extraction of an electron with the same spin produces

ψ†1|Φ−1〉 = ψ†1ψ
†
−1|Ψ̃0〉 , ψ−1|Φ−1〉 = |Ψ̃0〉 (10.11)

respectively, with the complementary annihilated states
ψ†1|Φ−1〉 = 0 and ψ†−1|Φ−1〉 = 0. Although the two states
written in Eq. (10.11) are different, the sole difference is
that one of them has an extra Cooper pair. For a macro-
scopically large system with the number of Cooper pairs
N À 1 this produces negligible difference in the energies
and matrix elements. Therefore, again, the injection of
electron with spin up (in our convention) and extraction
of electron of spin down produce the same physical state.
This state has a particle and a hole projection just as we
discussed in case of J0 < Jcrit.

Similar quantum phase transition occurs in a d-wave
superconductor even for a nonmagnetic impurity. In the
case of particle-hole symmetric band the unitary scatter-
ing produces a zero energy state, see Sec. VII, Eq. (7.1).
However for the particle hole asymmetric band the im-
purity state reaches zero energy and eventually changes
the sign as a function of impurity strength. This transi-
tion occurs at U0 > Ucrit ∼ µ, where µ is the chemical
potential that leads to a particle-hole asymmetric band.
It is known that single quasiparticle bound state forms
at U0 > Ucrit, and the ground state wavefunction has
a single unpaired quasiparticle, in addition to the BCS
pairs, see (Salkola et al., 1996, 1997).

D. Intrinsic π phase shift for J0 > Jcrit coupling

Here we would like to point a little noticed by im-
portant fact that near an impurity site the phase of the
superconducting order parameter changes by π. As is
shown Fig. 26d), the self-consistent solution indicates
that at J0 > Jcrit the phase of the order parameter on
the impurity site is shifted by π with respect to the phase
in the bulk. This is illustrated in Fig. 27.

In numerical calculation the spatial extent of the π
shifted region was found to be few atomic sites. Such a
sharp change in the phase of the order parameter costs
significant superconducting condensate energy and is not
preferred under normal circumstances. In the case at
hand however, in the strong coupling limit near the im-
purity site, the condensate energy is secondary to the
magnetic exchange energy, and physics is driven by mag-
netic interactions. Even though the phase shift is π, it
does not lead to any time reversal violating observable
effects, as there are no superconducting currents near

0

0

i
e

FIG. 27 Cartoon of the intrinsic π junction near magnetic
impurity in s-wave superconductor.

the impurity: I = Ic sin φ = 0. These results were ob-
tained in the self-consistent treatment within a negative
U model that allows for the on-site pairing (Salkola et al.,
1997).

We are not aware of a simple explanation of this effect.
It appears to be general and not restricted to a partic-
ular model. It is related to the π-shift superconducting
junctions with tunneling barriers containing a magnetic
impurity or a ferromagnetic layer. This subject is covered
extensively, see e.g. recent review and other papers (Bu-
laevskii et al., 1977; Buzdin et al., 1982; Buzdin, 2005;
Glazman and Matveev, 1989; Spivak and Kivelson, 1991).

XI. KONDO EFFECT AND QUANTUM IMPURITIES

Above we have concentrated on static impurities. In
the next two Sections we consider examples when im-
purity atoms have their own internal degrees of freedom
and impurities are dynamically coupled to conduction
electrons. That dynamical behavior often leads to qual-
itatively new results is well known from the studies of
the Kondo effect (Kondo, 1964): scattering of conduc-
tion electrons off of a single magnetic impurity.

At low T , dilute magnetic impurities doped into an
otherwise nonmagnetic metallic host have dramatic ef-
fects on the resistivity and susceptibility. The anom-
alies are due to screening of the impurity spin by con-
duction electrons. For a local spin S = 1

2 and antifer-
romagnetic exchange, a global singlet is formed by cou-
pling an electron state to the impurity site; quantum
dynamics of spin flips is crucial for its formation. The
process is manifested in the crossover of the susceptibility
from the Curie-like at high temperatures, χ = C/T with
C = 4µ2

BS(S + 1)/3kB , to Pauli-like below a character-
istic Kondo temperature TK ' W exp(−1/2JN0). Here
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W is the electron half band width and J is the exchange
constant. Importantly: a) Kondo screening occurs only
for antiferromagnetic exchange constant J > 0; and b)
the process is non-perturbative, as is clear from the non-
analytic dependence of TK on the exchange constant.
Full understanding of the single impurity Kondo problem
in a metal required concerted use of the renormalization
group (Anderson, 1970; Anderson et al., 1970), numeri-
cal renormalization group (NRG) (Wilson, 1975), exact
solutions via the Bethe ansatz (Andrei, 1980; Wiegmann,
1980), and large-N expansions (Coleman, 1984, 1985;
Read, 1985; Read and Newns, 1983a,b). Many results
are summarized in recent reviews (Cox and Zawadowski,
1998; Hewson, 1993).

Kondo screening involves mostly quasiparticles near
the Fermi energy, EF . In metals, the density of states
near EF varies weakly, and N(ε) ≈ N0, which greatly
simplifies the analysis. In contrast, if N(ε) varies strongly
for ε ≈ EF , Kondo effect is realized differently. In a band
gap insulator this was investigated in (Ogura and Saso,
1993), who found that the ground state of the magnetic
impurity changes from the singlet to multiplet when the
band gap increases, as in the case of the magnetic impu-
rity in a conventional BCS superconductor. In supercon-
ductors, however, the Cooper instability that gaps the
Fermi surface and depletes the density of states is itself
driven by the finite DOS in the normal state. Conse-
quently, the two effects compete.

For simplicity and following the historical develop-
ment, we so far considered properties of classical spin, for
which no reduction in magnitude due to Kondo screen-
ing is possible, see Sec.VI. We now give the current un-
derstanding of the question of which conclusion of this
analysis are robust for small spin values and in gapless
superconductors.

A. Kondo effect in fully gapped superconductors

In normal metals antiferromagnetic exchange leads to
Kondo screening below TK , while ferromagnetic exchange
does not. In superconductors, within the Shiba-Rusinov
analysis the sign of the exchange interaction between
the conduction electrons and impurity spins is irrelevant.
Consequently, treatment of quantum impurity spins has
to bring out the differences between two signs of J .

For J > 0 the opening of the superconducting gap
competes with Kondo screening as both instabilities are
driven by the finite DOS at zero energy. Clearly, if TK À
Tc, the impurity is completely screened by the time of
the onset of superconductivity. In contrast, for TK ¿ Tc

Kondo screening is suppressed by the depletion of states
upon opening of the superconducting gap.

In the RG picture Kondo screening is viewed as growth
(and divergence) of the effective exchange coupling, Jeff ,
as we focus at the properties of the system at lower and
lower energies. Therefore Jeff ,, and, with it, the phase
shift of scattering on the impurity depends on the en-

ergy of the incoming electron. Consequently, the effect
of scattering varies with temperature.

1. Ferromagnetic exchange

Early analytical attempts were carried out (Müller-
Hartmann, 1973; Zittartz and Müller-Hartmann, 1970) in
the framework of Nagaoka decoupling scheme (Hamann,
1967; Nagaoka, 1965, 1967). For J < 0 the bound state
splits off the band edge and was found to move towards
an asymptotic value

ε ≡ E0

∆
=

[
1 + g2π2S(S + 1)

]−1/2

, (11.1)

where g = λN0, and λ is the superconducting coupling
constant. For weak coupling, g ¿ 1, the bound state
remains close to the gap edge for all values of J < 0.
This qualitative result was later confirmed by NRG cal-
culations (Sakai et al., 1993; Satori et al., 1992), which
showed that the binding energy is well approximated by
ε ≈ 1− π2J2

eff/8, where

Jeff =
2|J |/W

1 + (2|J |W ) ln(W/∆)
. (11.2)

Therefore the ferromagnetic case corresponds to weak
coupling and small phase shift of scattering at low tem-
peratures.

The ground state of this system was argued to be a
doublet (Sakai et al., 1993; Satori et al., 1992; Soda et al.,
1967), since the ferromagnetic interaction renormalizes to
weak coupling and the impurity spin remains essentially
free. Recently it was suggested that superconducting in-
teraction is relevant (in the RG sense) in this model, and
therefore above a critical ∆-dependent coupling, JC (JC

is larger for smaller ∆), the ground state of the coupled
superconductor-impurity system is a triplet (mz = 0,±1)
(Yoshioka and Ohashi, 1998). This suggestion needs ex-
ploring further.

2. Antiferromagnetic coupling

In a normal metal Kondo screening corresponds to
Jeff → ∞ and hence scattering in the unitarity limit,
with the scattering phase shift, δ → π/2. The Hartree-
Fock analysis (Shiba, 1973) is insufficient to fully describe
this effect.

Several authors considered the limit TK ¿ ∆ (Müller-
Hartmann, 1973; Soda et al., 1967; Zittartz and Müller-
Hartmann, 1970), and found the position of the local-
ized excited state with various degrees of accuracy. In
this regime the localized state lies close to the gap edge,
as it does for the ferromagnetic coupling. In the oppo-
site limit, TK À ∆ approximate solution for the posi-
tion and the residue of the bound state was obtained
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in Refs. (Müller-Hartmann, 1973; Zittartz and Müller-
Hartmann, 1970), however, the results were inexact due
to the nature of their approximation. Later, within the
local Fermi liquid approach, the energy of the bound
state in this limit was found to be (Matsuura, 1977)

ε =
1− α2

1 + α2
, (11.3)

where

α ≈ π∆
4TK

ln
4eTK

π∆
. (11.4)

This result clearly shows that the phase shift of scattering
depends on the ratio Tc/TK .

The properties of the bound state, including its posi-
tion and spectral weight, for arbitrary values of TK/Tc

were obtained with the help of NRG (Sakai et al., 1993;
Satori et al., 1992). They found level crossing similar
to the quantum phase transition (discussed above) at
TK/∆ ∼ 0.3. For TK/∆ > 0.3 the impurity moment
is largely quenched by the time the depletion of states
caused by superconductivity affects screening. In that
case the ground state is a Kondo-screened singlet, while
the excited intra-gap state is a doublet with the spectral
weight ν ≈ 2 for TK∆ À 1, corresponding to a single-
particle state. Here ν is defined from

− 1
π

ImG(ω + iδ)/π =
ν

2

[
δ(ω−E0)+ δ(ω +E0)

]
. (11.5)

On the other hand, for TK∆ < 0.3 the Kondo effect is
suppressed by by the opening of the superconducting gap,
the ground state is a doublet corresponding to a free spin
state, while the bound excited state is a Kondo singlet.
The spectral weight, ν ≈ 0.5 for TK ¿ ∆, and changes
discontinuously at the phase transition point.

Level crossing means that the bound state is at zero
energy for TK/∆ ≈ 0.3, while it is close to the gap edge
for both TK À ∆ and TK ¿ ∆. Numerical results show
that the energy of the bound state is not symmetric with
respect to the crossing point: E0/∆ < 0.5 for 0.03 .
TK/∆ . 1 (Satori et al., 1992).

3. Anisotropic exchange and orbital effects

Several more complicated aspects of Kondo screening
in superconductors attracted attention in recent years,
and we review them briefly, referring the reader to the
original papers for further information. Anisotropic ex-
change interaction, Jz 6= J±, allows the investigation of
the crossover between the Ising regime, J± = 0, when the
spin-flip is disallowed and there is no Kondo screening,
and the isotropic exchange considered so far. The main
features of the phase diagram are discussed by (Yosh-
ioka and Ohashi, 1998), and new phases occur on the
ferromagnetic side. In particular, these authors find an
extended regime of Ising-dominated ground state even

for J± 6= 0. In addition, they find small regions of the
phase diagram around isotropic ferromagnetic and Ising
antiferromagnetic lines, where there exist two localized
intra-gap states. They also obtain a perturbative ana-
lytic expression for the shift of the bound state energy
due to anisotropy of the interaction.

Using the numerical RG approach to analyse Ander-
son’s model allows to interpolate between asymmetric
magnetic scattering, Kondo problem, and non-magnetic
scattering, including resonance U = 0 limit (Yoshioka
and Ohashi, 2000). In particular, the crossover from
magnetically induced bound state to the resonance non-
magnetic scattering regime(Machida and Shibata, 1972)
was studied.

Finally, so far we only discussed purely s-wave super-
conductors. Fully gapped systems include also materials
with a complex order parameter combining two (or more)
out of phase unconventional gaps, such as dx2−y2 + idxy,
or px + ipy. In both of these cases Cooper pairs have or-
bital degrees of freedom that also couple to the impurity
spins, leading to multichannel Kondo effect. In addition,
for p-wave pairing, the total spin of Cooper pairs is s = 1,
so that non-trivial changes in screening occur depending
on whether the impurity spin S = 1/2 or S = 1. The
NRG analysis of the Kondo problem in this system was
carried out very recently (Koga and Matsumoto, 2002a,b;
Matsumoto and Koga, 2002). They found that the two
order parameters are indistinguishable when only l = 0
impurity scattering partial wave is taken into account,
i.e. only the depletion of the density of states due to
the gap, rather the spin structure of the Cooper pair dic-
tated the Kondo screening. In that case the moment of
the ground state is determined by the orbital structure of
the Cooper pair. However, inclusion of higher harmonics
with l 6= 0 for scattering (extended impurity potential),
leads to some novel dependencies of the screening and
ground states on the exchange couplings.

B. Kondo effect in gapless superconductors

The systems analysed above are either metals with a
constant DOS at the Fermi surface, or superconductors
with a hard gap. Gapless superconductors, such as d-
wave, with the power law DOS, N(E) ∝ |E|r with r > 0,
present a new situation that attracted much attention
in recent years. The Kondo effect in systems where the
host single particle density of states follows a power law,
has been studied intensively (Borkowski and Hirschfeld,
1992, 1994; Bulla et al., 2000, 1997; Cassanello and Frad-
kin, 1996, 1997; Chen and Jayaprakash, 1995; Gonzalez-
Buxton and Ingersent, 1998; Han et al., 2002, 2004; In-
gersent, 1996; Ingersent and Si, 1998; Itoh, 1993; Logan
and Glossop, 2000; Polkovnikov, 2002; Polkovnikov et al.,
2001; Vojta, 2001; Vojta and Bulla, 2001; Withoff and
Fradkin, 1990; Zhang et al., 2001, 2002; Zhu and Ting,
2001a,c). Notice that considering the Kondo effect in a
system with the power law dependence of the DOS is not
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the same as analysing the competition between supercon-
ducting and Kondo correlations for a d-wave systems.

Fradkin and co-workers (Cassanello and Fradkin, 1996,
1997; Withoff and Fradkin, 1990) first employed a combi-
nation of the poor man’s scaling argument and the large-
N approach to spin- 1

2 impurity for 0 < r ≤ 1, and showed
that for all r > 0, there is a critical coupling value, Jc,
such that (i) at J < Jc the system is in the weak-coupling
regime when the Kondo interaction is irrelevant (J = 0
is a stable fixed point), and the impurity decouples from
the band; (ii) For J > Jc Kondo screening takes place.
Further studies based on the NRG approach (Chen and
Jayaprakash, 1995; Ingersent, 1996) identified particle-
hole asymmetry as a key factor in determining the low-
temperature physics. Their analysis indicated that even
at J = ∞ the impurity spin is only partially screened.
In the particle-hole symmetric case, for 0 < r ≤ 1

2 , there
exists a critical coupling Jc, above which the J = ∞
fixed point becomes stable. In contrast, for r > 1

2 , the
moment remains unscreened as the exchange 0 < J < ∞
renormalizes to zero. When the particle-hole symmetry is
broken by introducing a static potential scattering at the
impurity, a critical Jc exists for an arbitrary r. For a fixed
value of r (≥ 1

2 ), the critical coupling depends strongly
on the potential scattering. Detailed dependence of Jc

on the potential scattering is complicated and readers
are referred to (Ingersent, 1996).

In real systems, the power-law variation of N(ε) is re-
stricted to an energy range |ε| ≤ ∆0, with N(ε) ≈ N(∆)
for ∆0 < |ε| ≤ W . The NRG approach gave results
entirely consistent with those known for gapped sys-
tems (The full gap 2∆0 in the spectrum corresponds
to r = ∞ limit). For the particle-hole symmetric
case, an impurity in an insulator retains its moment, no
matter how large J is. Away from particle-hole sym-
metry, the spin is screened provided that J > Jc ≈
2W/ ln(W/∆0) (Takegahara et al., 1992). Formation
and screening of the local moments in d-wave supercon-
ductors has been investigated using the variational wave
function approach (Simon and Varma, 1999).

The Hamiltonian of a magnetic impurity in a metal
with a non-trivial DOS is

H =
∑

σ

∫ ∞

−∞
dεN(ε)εc†εσcεσ +

1
NL

∑

k,k′
[(U0 +

J

2
)c†k↑ck′↑

+(U0 − J

2
)c†k↓ck′↓] +

J

2

∑

k,k′
[c†k↑ck′↓S− + c†k↓ck′↑S+] ,

(11.6)

where N(ε) is the electron density of states, NL is the
lattice size, and we included both potential scattering
and exchange.

Interest in the Kondo impurities in d-wave systems
is motivated by the recent STM and NMR experiments
around single impurities in the high-Tc cuprates. Zn and
Ni are believed to replace Cu in the cooper-oxide plane
and change the local electronic structure without chang-
ing net carrier concentration. Simple valence counting

suggests that, if Zn and Ni impurities maintain a nominal
Cu2+ charge, the Zn2+ has (3d)10, S = 0 configuration
and acts as a nonmagnetic impurity. In contrast Ni2+ is
in (3d)8, S = 1 state and is magnetic. Direct comparison
between the two cases is difficult.

Nuclear magnetic resonance (NMR) experiments per-
formed with nonmagnetic spin-0 (Zn,Li,Al) in doped
cuprates (Alloul et al., 1991; Ishida et al., 1993, 1996;
Mahajan et al., 1994, 2000; Mendels et al., 1999) showed
clearly that these impurities induce a local S = 1

2 mo-
ment on the nearest-neighbor Cu. It was also demon-
strated that the magnetic properties associated with the
substitution of these impurities strongly depend on the
hole doping: In the underdoped regime, the susceptibility
obeys Curie’s law below the superconducting transition
temperature Tc. Near optimal doping, the Kondo screen-
ing (albeit strongly reduced) may persist to the lowest T .

NMR shows that the induced moment is spatially dis-
tributed around the impurity. It is important to empha-
size that this moment is merely a particular bound state
of conduction electrons near the impurity and the precise
form of the interaction of the induced moment with other
conduction electrons is a priori unknown. Kondo effect
in the cuprates does not simply stem from the screening
of the pre-formed local moment: Moment formation and
screening (as well as pairing) result from the same bare
interactions.

Nonetheless, in the absence of the microscopic theory
of high-Tc superconductivity, many authors use the ideas
of the Kondo screening as a starting point for the analy-
sis of experiments. Moreover, in most unconventional
superconductors other than cuprates, the properties of
a magnetic impurity embedded in a superconductor is a
well defined theoretical problem. The Hamiltonian con-
sists of an unconventional (d-wave in our case) BCS state
HBCS , a potential scattering term Hpot, and a magnetic
term Hmag. The magnetic term can be described by ei-
ther Anderson impurity model or Kondo exchange model,
and the impurity spin can be either localized at a single
site or spatially distributed in its vicinity. For the An-
derson model with the single-site coupling, the magnetic
term is given by:

Hmag =
∑

kσ

[Vkdc
†
kσdσ + H.c.] + εd

∑
d†σdσ + Udnd↑nd↓ .

(11.7)
In the strong Ud limit, the Anderson model can be
mapped onto a Kondo s-d exchange model through the
Schrieffer-Wolff transformation (Hewson, 1993), leading
to

Hmag = Js0 · S , (11.8)

where s0 = 1
2

∑
σσ′ c

†
0σσσσ′c0σ′ is the spin operator for

the conduction electron at the impurity site. For multi-
site coupling

Hmag =
∑

Iσ

[VIdc
†
Iσdσ + H.c.] + εd

∑
σ

d†σdσ + Udnd↑nd↓ ,

(11.9)
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where I is the set of nearest neighbors sites

Hmag =
∑

I

JIsI · S . (11.10)

The Anderson impurity model for a single-site cou-
pling in d-wave superconductors, Eq. (11.7), was studied
by Zhang, Hu, and Yu (Zhang et al., 2001). A sharp lo-
calized resonance above the Fermi energy was predicted
for the impurity state. The marginal Fermi liquid be-
havior, i.e. logarithmic, in frequency, self-energy, and
a linear relaxation rate were also obtained, indicating
a new universality class for the strong coupling fixed
point. Almost at the same time, the multi-site cou-
pling Anderson impurity model, Eq. (11.9) was consid-
ered by Zhu and Ting (Zhu and Ting, 2001a,b) while
the multi-site coupling Kondo impurity was studied by
Polkovnikov, Sachdev, and Vojta (Polkovnikov, 2002;
Polkovnikov et al., 2001). All these works show the ex-
istence of Kondo resonance. The low energy structure
of spectral weight of the conduction electrons was found
to be sensitive to the local environment surrounding the
dynamic impurity. The on-site potential scattering was
taken to be either zero (Zhang et al., 2001) or very
weak (Polkovnikov, 2002; Polkovnikov et al., 2001) and
the resonance peak was close to the Fermi energy. Zhu
and Ting (Zhu and Ting, 2001a) took into account the
quasiparticle scattering from a geometrical hole, where
electrons are allowed to hop onto the four neighbors of
the impurity site, and obtained a double-peak structure
around the Fermi energy. Further (Zhu and Ting, 2001b)
considered the potential scattering term to be in the uni-
tary limit (U →∞), and found that the Kondo screening
and the strong potential scattering together determine
the low energy quasiparticle states. The delicate influ-
ence of the potential scattering on the Kondo physics as
well as the local electronic structure in d-wave supercon-
ductors has been re-emphasized by Vojta and Bulla (Vo-
jta and Bulla, 2001).

Here we present a discussion based on the multi-site
coupling Kondo impurity model, as given by Eq. (11.10).
As demonstrated in previous sections, the problem of a
single-site potential scattering can be exactly solved. In
the Nambu space, the full matrix Green’s function is

G(i, j; iωn) = G0(i, j; iωn)+G0(i, 0; iωn)T (iωn)G0(0, j; iωn)
(11.11)

where the T -matrix due to the potential scatterer is

T−1(iωn) = τ3/U −G0(0, 0; iωn) , (11.12)

and G0 is the Green’s function for the clean system. In
the presence of both potential and magnetic scattering
the Green’s function is:

G̃(i, j; iωn) = G(i, j; iωn) +
∑

l,l′
ϕlϕl′G(i, l; iωn)TK(iωn)

×G(l′, j; iωn) . (11.13)

-2 0 2
(r - r0)x

-3

-2

-1

0

1

2

3

(r
 -

 r
0)

y

-50 -25 0 25 50

Sample bias [meV]

0

10

20

30

40

50

In
te

ns
ity

-2 0 2
(r - r0)x

-3

-2

-1

0

1

2

3

-50 -25 0 25 50

Sample bias [meV]

0

20

40

60

80
Without filter With filter

FIG. 28 Calculated tunneling density of states for the four-
site Kondo impurity model at 15% hole doping with a realistic
band structure (t = 0.15 eV, t′ = −t/4, t′′ = t/12), ∆0 = 0.04
eV, and µ = −0.14 eV. The Kondo coupling is J = 0.09
eV, the potential scattering U = 0. Top: Local DOS vs.
energy for the impurity site (red) and the nearest (blue) and
second (green) neighbor sites. Bottom: Spatial dependence
of the local DOS at ω = −2 meV. Left: Local DOS in the
CuO2 plane. Right: Local DOS after applying the filter effect
proposed by Martin, Balatsky, and Zaanen (Martin et al.,
2002). From Vojta and Bulla (Vojta and Bulla, 2001)

Here l and l′ label the nearest neighbors to the impurity
site at (0,0), and TK is the T -matrix for the Kondo impu-
rity. The variables ϕl have different meaning depending
on the approach to TK . In the large-N approximation
(equivalent to the slave-boson mean-field theory)

T −1
K = iωn − λτ3 −

∑

l,l′
ϕlϕl′τ3G(l, l′; iωn)τ3 , (11.14)

and ϕl are the complex Hubbard-Stratonovich fields,
which are determined, together with the Lagrange mul-
tiplier λ, by the saddle point solution. Within the NRG
approach only the strongest d-wave scattering channel is
considered, and the variables are taken to be ϕl = +(−)1
depending on the bond orientation. Note that this d-
wave pattern is simply a band structure effect and is not
related to the d-wave symmetry of the superconducting
order parameter of the host. The LDOS is:

ρi(ω) = − 1
π

Im{Tr
[
G̃(i, i;ω + i0+)

1 + τ3

2

]
} . (11.15)

Figures 28− 30 show the LDOS for a four-site Kondo
impurity and different strength of the potential scat-
tering, calculated using the NRG technique (Vojta and
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FIG. 29 Same as Fig. 28, but with potential scattering U =
t = 0.15 eV. Here, J = 0.065 eV. The lower panel shows the
local DOS at ω = +2 meV. From Vojta and Bulla (Vojta and
Bulla, 2001).

Bulla, 2001). It is clear that the spatial structure of the
resonance state is sensitive to the strength of the po-
tential scattering: if it is absent, sharp resonance peak
appears directly on the impurity site, as well as on its
next-nearest neighbors, with reduced intensity. This is
consistent with the experimental observations (Pan et al.,
2000b). For a moderate value of the potential scatter-
ing, as shown in Fig. 29, the global particle-hole asym-
metry changes its sign and the Kondo peak appears at
the opposite side of the Fermi level compared to Fig. 28.
For strong (but finite) potential scattering, the resonance
peak due to impurity scattering becomes dominant, and
the Kondo effect is weaved into the overall structure of
the LDOS. In this case, the intensity of the on-site peak
is strongly suppressed, and a double-peak structure with
enhanced intensity is seen in the LDOS at the nearest-
neighbor sites. The same results were also obtained by
Zhu and Ting (Zhu and Ting, 2001a) based on the An-
derson impurity model. In this simple model the large
LDOS from the resonance state induced by the strong po-
tential scatterer reduces dramatically the critical Kondo
coupling, indicating that the fate of the Kondo effect is
determined by local rather than global environment in
which the magnetic impurity is embedded. In the uni-
tary limit (infinite impurity potential) LDOS has a zero
intensity at the impurity site and a sharp single peak
at its nearest neighbors. Consequently, to achieve agree-
ment with the pattern observed in experiment, one needs
to invoke the filter effect (Martin et al., 2002; Zhu et al.,
2000c), which is detailed in Sec. IX.
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FIG. 30 Same as Fig. 28, but with potential scattering U =
4t = 0.6 eV. Here, J = 0.04 eV. The lower panel shows the
local DOS at ω = +3 meV. From Vojta and Bulla (Vojta and
Bulla, 2001).

XII. INELASTIC SCATTERING IN d-WAVE
SUPERCONDUCTOR

A. Inelastic scattering: general remarks

Previous section provided the simplest example of an
impurity with an internal degree of freedom – spin for
the Kondo effect. As a result, we had to extend the
previous treatment of static impurities to account for the
scattering processes that involve spin flips, which resulted
in a qualitatively new behavior. We now take this idea
further and explore inelastic scattering processes.

By definition, impurity scattering changes the direc-
tion of the quasiparticle momentum. However, purely
potential scattering is elastic, i.e. the quasiparticle en-
ergy does not change. Kondo impurity affects electron
spin, however, the scattering remains elastic: the ener-
gies of the spin-up and spin-down impurity states are
identical; this degeneracy is at the origin of the Kondo
singlet formation. In this section we consider inelastic
scattering processes that involve not only momentum but
also energy transfer. There are two distinct scenarios
for inelastic scattering. One possibility is that impuri-
ties themselves are dynamic, and energy is transferred
to/from electrons during scattering, only when they are
in the immediate vicinity of the impurity. This is an ex-
tension of the previous treatment. Another possibility
is that electrons scatter off of a delocalized ( extended)
collective mode, such as a spin wave or a phonon, while
the scattering on impurities remains elastic.
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We consider the two situations separately. In the for-
mer case the impurity induced electron self energy con-
tains the information both about the spatial and the tem-
poral, or dynamical, structure of the impurity. The latter
case is even more interesting, as the information about
the extended collective mode is encoded in real space
Friedel oscillations around the impurity site, and its de-
termination is only possible due to the presence of impu-
rities. Below we discuss a proposal to combine Fourier
transform and inelastic tunneling spectroscopy (IETS).
Fourier Transformed IETS, which is an extension of the
FT-STM discussed above, allows, in principle, the inves-
tigation of both characteristic momentum and energy of
the inelastic scattering. The central object we deal with
in this technique is d2I(q, eV )/dV 2, similar to real space
IETS STM (Hahn and Ho, 2001; Stipe et al., 1998). Ex-
tension of the IETS analysis to reciprocal space reveals
nontrivial features in the spectra with simultaneous mo-
mentum and energy resolution.

The rest of the section is devoted to IETS in d-wave
superconductors. Similar analysis can be done for the s-
wave case, (Brandt, 1970) . We expect the IETS features
at energies above the gap to be similar for s- and d-wave
superconductors, while below the gap a detailed analysis
is required.

B. Localized modes in d-wave superconductors

Two examples that we review explicitly are the local vi-
brational mode (arising, for example, from a substitution
atom in the lattice), and the scattering on an impurity
spin in an applied magnetic field. Essentially the same
techniques are used to analyze both situations, and here
we follow (Balatsky et al., 2003; Morr and Nyberg, 2003).

The Hamiltonian for a local distortion coupled to elec-
trons is known from the standard electron-phonon cou-
pling theory. Here, however, the interaction occurs only
at the impurity site, so that

H =
∑

kσ

ξkc†kσckσ +
∑

k

[∆kc†k↑c
†
−k↓ + h.c.]

+g
∑

σ

(b† + b)c†0σc0σ , (12.1)

The Hamiltonian for a spin S interacting with the elec-
trons via a contact exchange JS · σ is quite different

H =
∑

k

ξ(k)c†kσckσ +
∑

k

[∆(k)c†k↑c
†
−k↓ + h.c.]

+
∑

k,k′,σ,σ′
JS · c†kσσσσ′ck′σ′ + gµBS ·B . (12.2)

The external magnetic field B||ẑ leads to Zeeman split-
ting of the spin states by the Larmor frequency, ω0 =
gµBB. If the spin is in an equilibrium with a thermal
bath, Zeeman splitting of spin levels is exactly analogous
to the frequency of a local mode, and electron can scatter
off the spin inelastically. We focus on the latter case.

In Eq.(12.2) we used a mean field description of su-
perconducting state, and ignored both orbital and Zee-
man effect of the field on the conduction electrons.
This is justified for B ¿ Hc2

8. In the following we
choose |S| = 1/2, and consider a d-wave superconductor,
∆(k) = ∆

2 (cos kx − cos ky) at low temperatures T ¿ Tc.
Clearly, this treatment is only justified when the spin is
not screened via Kondo interaction at low T .

Since spin splitting (and hence the inelastic scattering)
involves only the components transverse to the field, the
information about the scattering, to second order, is con-
tained in the self-energy with normal Green’s function:

Σ(ωl) = J2T
∑

k,Ωn

G(k, ωl − Ωn)χ+−(Ωn) , (12.3)

Here the spin propagator χ(τ) = 〈TτS+(τ)S−(0)〉
in the frequency space is given by χ0(ω) =
〈Sz〉/(ω2

0 − (ω + iδ)2). For local mode that present on
a single site there is no contribution to Σ from the anom-
alous Green’s function as

∑
k F (k, ω) = 0. For a free

spin in a field 〈Sz〉 = tanh(ω0/2T )/2, but we keep the
notation 〈Sz〉 to account for magnetic anisotropy. The
functional form of the propagator is identical to that of
a phonon mode, and therefore subsequent analysis is ap-
plicable to both situations.

In Eq.(12.3) the Green’s function is determined self-
consistently, G−1 = G(0)−1−Σ, where G(0) is the Green’s
function of the pure d-wave superconductor, and Ωl(ωl)
are the bosonic (fermionic) Matsubara frequencies. After
analytic continuation to real axis, iωn → ω + iδ, we find
for the imaginary part of the self energy

ImΣ(ω) = −J2〈Sz〉ImG(ω−ω0)[nF (ω−ω0)−nB(ω0)−1] ,
(12.4)

where nF (B)(ω) = 1/[1 + (−) exp(βω)] are Fermi (Bose)
distribution functions. All the information about the
tunneling DOS is contained in the self-energy. The mod-
ifications of the superconducting order parameter and
bosonic propagator are ignored here.

Fig. 31 shows the results for local density of states
at the impurity site, solved numerically by finding
Σ and G. To proceed with analytical treatment we
limit ourselves below to second order scattering in
Σ. We find that the differences between the self-
consistent solution and the second order calculation are
only quantitative. To that accuracy, the corrections
to the Green’s function are G(r, r′, ω) = G0(r, r′, ω) +
G0(r, 0, ω)Σ(ω)G0(0, r′, ω) + F 0(r, 0, ω)Σ(ω)F ∗0(0, r, ω).
We define K(T, ω, ω0) = −[nF (ω−ω0)−nB(ω0)−1, and
focus on the T ¿ ω0, when K(T, ω, ω0) ' Θ(ω − ω0)].
From this expression, the correction to the LDOS at point

8 To minimize the orbital effect of magnetic field one can apply it
parallel to the surface of a superconductor. The magnetic field
is screened on the scale of penetration depth so that its effect on
the superconducting electrons is small.
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FIG. 31 The DOS (black line) and its derivative (red line)
for a local boson mode scattering in a d-wave superconduc-
tor. The normal self-energy was treated self-consistently in
Eq. (12.4). We ignored vertex corrections and gap modifica-
tion. In addition to the feature at ω = ω0 we find strong satel-
lite peaks at ∆ + ω0 resulting from the coherence peak in the
DOS of a d-wave superconductor. Satellites are not present in
the pseudogap state with no ODLRO. These features are best
seen in dN

dω
. Energy is in units of ∆, the dimensionless cou-

pling constant is 1. The top three panels are for local mode
frequencies ω0/∆ = 0.2, 0.4, 0.6. The lower panel shows the
asymptotic analytic solution, that assumes ω0 ¿ ∆ and uses
Eq. (12.2), for ω0 = 0.4. The overall features are similar for
both cases, however the analytic solution shows a somewhat
larger feature. From (Balatsky et al., 2003)

r is: δN(r, ω) = (1/π)Im[G0(r, 0, ω)Σ(ω)G0(0, r, ω) ±
F 0(r, 0, ω)Σ(ω)F ∗0(0, r, ω)]. Here plus (minus) sign cor-
responds to the coupling to the local vibrational (spin)
mode, i.e to the cases of preserved (broken) time-reversal
symmetry. The modification of the LDOS is most pro-
nounced at the impurity site, where we find

δN(r = 0, ω)
N0

=
π2

2
(JSN0)2

ω − ω0

∆
K(T, ω, ω0)

×
(

2ω

∆
ln

(
∆
ω

))2

, ω ¿ ∆ , (12.5)

δN(r = 0, ω)
N0

= 2π2(JSN0)2K(T, ω, ω0) ln2

( |ω −∆|
4∆

)

× ln
(

4∆
|ω + ω0 −∆|

)
+ (ω0 → −ω0), ω ' |∆| . (12.6)

To obtain this result we retained only the dominant real
part of G0(0, 0, ω) = N0

2ω
∆ ln( 4∆

ω ) for ω ¿ ∆, and the
dominant imaginary part of G0(0, 0, ω) = iπN(ω) =
−2iN0 ln( |ω−∆|

4∆ ), in the opposite limit ω ' ∆. The re-
sults for the LDOS N(ω) and its derivative dN(ω)

dω are
shown in the lower panel of Fig. 31.

Away from the impurity site N(r, ω) exhibits Friedel
oscillations. Standing wave produced by inelastic scat-
tering has fingerprints of the energy transfer: there is a
peak (or a cusp) in the derivative of the DOS with re-
spect to energy. These oscillations can be called inelastic
Friedel oscillation, stressing oscillation nature of inelas-
tic signal d2I/dV 2 in real space. These oscillations can
also be analyzed in reciprocal space, similar to the elas-
tic case IX.D. The real space pattern at ω ¿ ∆ is given
by Λ(r) = [|G0(r, ω)|2 ± |F 0(r, ω)|2] ∼ sin(kF r)

(kF r||)2+(r⊥/ξ)2 .
Here we separated r = (r⊥, r||) into the components
along (r⊥) and normal to (r||) the Fermi surface near
the nodal point. Existence of the nodes in the super-
conducting gap leads to the power law decay of Λ(r) in
all directions, and to its four fold modulation due to gap
anisotropy; See (Salkola et al., 1997)), and Sec. VII).

It is important to emphasize the differences between
the resulting LDOS behavior for a nodal superconductor
and a normal metal. For a d-wave superconductor, using
the connection between the differential conductance in
STM experiments and DOS, we find

δ dI
dV / dI

dV ∼ δN(r = 0, V )/N0 ∼ (JSN0)2 V−ω0
∆ Θ(V − ω0) ,

δ d2I
dV 2 ∼ (JSN0)2Θ(V − ω0) . (12.7)

In contrast, for a metal with the energy independent nor-
mal state DOS, from Eq. (12.5) for T ¿ ω0

dI

dV
∼ δN(r = 0, V ) ∼ J2N3

0 Θ(V − ω0) , (12.8)

and the second derivative reveal a delta function
d2I/dV 2 ∼ J2N3

0 δ(ω−ω0). We emphasize that the dom-
inant effect is purely due to the energy dependence of the
DOS, and therefore both in a d-wave superconductor and
in a metal with vanishing DOS N(ω) = N0

ω
∆ (such as in

some of the models of the pseudogap) there is a step dis-
continuity in d2I/dV 2 at the energy of a local mode with
the strength J2N2

0 (see Fig. 31).
The result can be generalized to a metal with a power

law DOS, N(ω) = 1/πImG0(0, 0, ω) = (ω/∆)γN0, with
γ > 0. From Eqs. (12.4-12.5) we have for ω ¿ ∆:

δ dI
dV / dI

dV ∼ δN(r = 0, V )/N0 ∼ (V − ω0)γΘ(V − ω0) ,

δ d2I
dV 2 ∼ (V − ω0)γ−1Θ(V − ω0) . (12.9)

Thus we find a singularity at ω0 for γ < 1, and a power
law for γ ≥ 1. For γ = 1 we recover the result for d-wave
superconductor.
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FIG. 32 Satellite peaks for an impurity resonance ωimp at
ωimp±ω0 are shown schematically. The satellites have differ-
ent spectral weight. If an electron with energy ωimp + ω0 is
injected into the system, it can excite a local mode and form
the bound state at ωimp. Similarly, an injected electron at en-
ergy ωimp − ω0 can absorb local mode energy to reach ωimp.
For the latter process to occur the mode has to be excited,
and hence this peak has very low weight at low T. The two
processes have different matrix elements. Relative weight of
the side peaks is proportional to J2N2

0 which we assumed to
be small. For magnetic scattering (ω0 = gµBB) the splitting
is tunable by the field. From (Balatsky et al., 2003)

These results can be expressed more generally via the
energy spectrum of the superconductor. Using spectral
representation for G(r, ω) with Bogoliubov’s functions
uα(r), vα(r) for the eigenstate α,

G(r, ω) =
∑
α

[ |uα(r)|2
ω − Eα + iδ

+
|vα(r)|2

ω + Eα + iδ

]
. (12.10)

For T ¿ ω0 we find

ImΣ(ω) =
πJ2

2ω0
〈Sz〉[|uα(r = 0)|2δ(ω − ω0 − Eα)

+|vα(r = 0)|2δ(ω − ω0 + Eα)] , ω > 0.(12.11)

In the last equation for ω < 0 we need to symmetrize,
ω0 → −ω0. Consider a magnetic impurity resonance in
a d-wave superconductor at energy ωimp, (such as a Ni
resonance in cuprates (Hudson et al., 2001; Salkola et al.,
1997)). Then the sum is dominated by the term with
resonance level Eα = ωimp in the vicinity of the impurity
site. Inelastic scattering produces satellites of the main
level split from it by the energy ω0, see Fig. 32. Similar
splitting of occurs for a phonon mode with energy ω0.

For cuprates, taking the experimentally measured DOS
N0 ' 1/eV with JN0 ' 0.14,∆ = 30meV (Hudson et al.,
2001) and assuming the field of ∼ 10T we find ω0 =
1meV . Then from Eqs. (12.5-12.7)

δN(r = 0, ω)/N0 ' 10−2 ω − ω0

∆
Θ(ω − ω0) . (12.12)

For observation of this effect one has to sample DOS in
the vicinity of eV = ω0 ∝ B. Assuming ω − ω0 = ω0

we have from Eq. (12.12) δ dI
dV / dI

dV ∼ 10−2. Expressed
as a relative change of DOS of a superconductor N(ω) =
N0ω/∆ effect is:

δ
dI

dV
/

dI

dV
∼ δN(r = 0, ω)/N(ω0) ∼ 10−2 ω − ω0

ω0
Θ(ω−ω0) .

(12.13)
It is of the same order as the observed vibrational modes
of localized molecules in inelastic electron tunneling spec-
troscopy STM, IETS-STM (Hahn and Ho, 2001; Stipe
et al., 1998). The satellites at ∆ + ω0 produce the effect
of the order unity, and are clearly seen even for small
coupling. The important difference with phonons is that
for a localized spin scattering the kink in DOS is tunable
with magnetic field which makes its detection easier.

The proposed extension of the inelastic tunneling spec-
troscopy on the strongly correlated electrons states, such
as a d-wave superconductor and pseudogap normal state
opens possibilities to study the dynamics of local spin and
vibrational excitations. The DOS in these systems often
has power law energy dependence, N(ω) ∼ ωγ , γ > 0,
resulting in weaker features than in normal metals. This
technique allows for Zeeman level spectroscopy of a single
magnetic center, thus allowing, in principle, single spin
detection. The feature in dI/dV ∼ (ω−ω0)γ−1Θ(ω−ω0)
near the threshold energy ω0 is due to inelastic scatter-
ing. One also finds strong satellite features near the gap
edge due to coherence peak for a superconducting case.
The singularity in the derivative of the conductance is of
a power law type, and qualitatively different from the re-
sults for metallic DOS (Hahn and Ho, 2001; Stipe et al.,
1998). For the relevant values of parameters for high-Tc

the feature is expected to be on the order of several per-
cents and should be observable. Similar predictions are
also applicable to the local vibrational modes, where ω0

is the mode frequency.

C. Interplay between collective modes and impurities in
d-wave superconductors

We have focused so far on the IETS for local modes,
where inelastic scattering occurs only on one site. Here
we extend the discussion to the case of a collective mode.
In real systems this may be a spin (Abanov et al., 2002;
Campuzano et al., 1999; Eschrig and Norman, 2000; Kee
et al., 2002; Norman and Ding, 1998) or lattice (Damas-
celli et al., 2003; Gweon et al., 2004; Lanzara et al., 2004)
mode.

We are motivated by the possible connection between
the kink in the quasiparticle dispersion found in ARPES
data on cuprates, and phonon modes (and, possibly, in-
teractions that lead to superconductivity) (Damascelli
et al., 2003; Gweon et al., 2004; Lanzara et al., 2004).
Efforts to relate the data from ARPES, STM, and trans-
port measurements in cuprates have recently intensi-
fied (Scalapino et al., 2004; Zhu et al., 2004c). It was
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also suggested that the full Eliashberg function in fre-
quency and momentum space may be extracted from
ARPES (Vekhter and Varma, 2003), and the challenge
is to design a similar procedure to use with IETS STM.

At first glance it seems that local probes have poor
momentum resolution since they couple to LDOS, which
is summed over all momenta, and cannot identify the
momentum dependence of the collective modes. We ar-
gue that this is a misconception, and the FT IETS can
provide the momentum spectroscopy of the modes that
produce inelastic scattering.

The elastic FT STM can identify the Fermi wave vec-
tors because of Friedel oscillations in the electron density
due to impurities, see Sec. IX.D. For the FT IETS, we
need impurity scattering to produce interference waves
in real space. Hence we look at the features arising
from the interplay between dynamic scattering off the
collective mode and static disorder. We use the Fourier
transform of the LDOS as a tool to investigate the char-
acteristic momentum and energy features containing the
fingerprints of the bosonic excitations (Zhu et al., 2004a).

We call this approach the Fourier transformed inelastic
electron tunneling spectroscopy STM (FT-IETS STM).
The central object in this technique is the Fourier trans-
form of the second derivative of the tunneling current,
d2I/dV 2(q, eV ). The energy signatures of the quasipar-
ticle interaction with the collective mode, and the real
space pattern of the scattering of the same quasiparticles
from a local impurity combine to produce features con-
taining the information about the energy and momentum
of the mode in d2I/dV 2(r, eV ). Fourier transform map
of this quantity could help to uncover the characteristic
momenta of the mode, just as conventional Friedel oscil-
lations encode the Fermi wavevector in d2I/dV 2(r, E),
see Sec. XII.B.

To illustrate this idea consider a spin resonance
mode, such as that revealed by neutron scattering in
cuprates (Abanov et al., 2002; Campuzano et al., 1999;
Eschrig and Norman, 2000; Kee et al., 2002; Norman and
Ding, 1998). STM was proposed to be used for its detec-
tion (Zhu et al., 2004a). We limit consideration to the
example of a sharp mode at the wave vector Q = (π, π)
with energy ω0 = 42 meV. This assumption allows to
highlight the effect, but the formalism presented here is
equally applicable to the case where mode spectral den-
sity is distributed in energy and momentum.

We have to keep track of the self-energy effects as a
function of energy as well as momentum. Inelastic scat-
tering of quasiparticles requires considering the off shell
excitations, up to energies ∆ + Ω0 ∼ 70 meV. At these
energies the Fermi surface effects, typical wave vectors
of the collective mode and typical wave vectors of the
impurity potential all determine the momentum depen-
dence of the inelastic tunneling features seen in FT IETS

STM. 9

We start with a model Hamiltonian describing two-
dimensional electrons coupled to a collective spin mode
and in the presence of disorder:

H = HBCS +Hsp +Himp . (12.14)

Here the BCS-type Hamiltonian is given by HBCS =∑
k,σ(εk − µ)c†kσckσ +

∑
k(∆kc†k↑c

†
−k↓ + ∆∗

kc−k↓ck↑),
where εk is the normal state dispersion, µ the chem-
ical potential, and ∆k = ∆0

2 (cos kx − cos ky) the d-
wave superconducting energy gap. The coupling be-
tween the electrons and the resonance mode is modeled
by Hsp = g

∑
i Si · si, where g, si, and Si are the cou-

pling strength, the electron spin operator at site i, and
the operator for the collective spin degrees of freedom,
respectively. Dynamics of the collective mode is speci-
fied by spin S susceptibility χij(τ), defined below. The
quasiparticle scattering from impurities in the Hamil-
tonian is given by Himp =

∑
iσ Uic

†
iσciσ ,where Ui is

the strength of the impurity potential, and we consider
weak (Born) scattering. One of the interesting findings
is that characteristic wave vectors of the impurity poten-
tial Uq =

∑
i Ui exp(iq · ri) play a crucial role in defining

characteristic wave vectors of the DOS modulation. For
simplicity, we consider only nonmagnetic scattering.

By introducing a two-component Nambu spinor oper-
ator, Ψi = (ci↑, c

†
i↓)

T , one can define the matrix Green’s
function for the full Hamiltonian system, Ĝ(i, j; τ, τ ′) =
−〈Tτ [Ψi(τ) ⊗ Ψ†j(τ

′)]〉. Simple algebra leads to the full
electron Green’s function with impurity scattering:

G(i, j; iωn) = G̃(0)(i, j; iωn)

+
∑

j′
Uj′ [G̃(0)(i, j′; iωn)G̃(j′, j; iωn)

−F̃ (0)(i, j′; iωn)F̃ (0)(j′, i; iωn)] (12.15)

Here G̃(0), F̃ (0), F̃ ∗(0) are the dressed by collective mode
scattering normal and anomalous Green’s function, with
its Fourier component given by 11, 12 and 21 components
of the full matrix Green’s function:

[ ˆ̃G
(0)

]−1(k; iωn) =

(
iωn − ξk − Σ11 −∆k − Σ12

−∆k − Σ21 iωn + ξk − Σ22

)
,

(12.16)
where ξk = εk − µ, ωn = (2n + 1)πT is the fermionic
Matsubara frequency. When quasiparticles scatter in-
elastically off of the collective mode, the self-energy, to
the second order in the coupling constant, is

Σ̂(k; iωn) =
3g2T

4

∑
q

∑

Ωl

χ(q; iΩl)Ĝ(0)(k−q; iωn−iΩl) ,

(12.17)

9 We limit ourselves to the second order scattering between carriers
and bosonic excitations and at this level there is no conceptual
difference in the method for spin or phonon bosonic mode.
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where χ(q; iΩl) is the dynamical spin susceptibility
χij(τ) = 〈Tτ (Sx

i (τ)Sx
j (0))〉 and Ωl = 2lπT the bosonic

Matsubara frequency, Ĝ(0) is the bare superconducting
Green’s function and ˆ̃G(0) is the superconducting Green’s
function dressed by scattering of the collective mode, but
without disorder. We assume that the d-wave pair po-
tential is real. For a single-site impurity, the equation of
motion for the full Green’s function can be exactly solved,
see above. For multiple impurities, and especially for the
inhomogeneous situation, an approximation scheme for
Σ̂ is in order. In the Born limit, the normal Green’s G
function is found to be:

G(i, j; iωn) = G̃(0)(i, j; iωn) + δG(i, j; iωn) (12.18)

with

δG(i, j; iωn) =
∑

j′ Uj′ [G̃(0)(i, j′; iωn)G̃(0)(j′, j; iωn)

−F̃ (0)(i, j′; iω)F̃ ∗(0)(j′, j; iωn)] . (12.19)

The LDOS at site i, summed over spin components, is

ρ(ri, E) = − 2
π

ImG(i, i; E + iγ) , (12.20)

where γ = 0+. We are especially interested in the cor-
rection to the LDOS from the impurity scattering,

δρ(ri, E) = − 2
π

ImδG(i, i; E + iγ) , (12.21)

and its Fourier transform,

δρ(q, E) =
∑

i

δρ(i, E)e−iq·ri

= − Uq

Nπi

∑

k

[G̃(0)(k + q;E + iγ)G̃(0)(k; E + iγ)

−G̃(0)∗(k− q; E + iγ)G̃(0)∗(k; E + iγ)

−F̃ (0)(k + q;E + iγ)F̃ ∗(0)(k;E + iγ)

+F̃ (0)∗(k− q;E + iγ)F̃ (0)(k;E + iγ)] .(12.22)

Here Uq =
∑

i Uie
−iq·ri is the Fourier transform of the

scattering potential. It multiplies the entire result, and
directly affects the FT IETS image. For example, if Uq

has a strong peak at q = q0, it will result in a spurious
peak in the FT IETS image, not related to the charac-
teristic momenta for the inelastic scattering. Detailed
knowledge of the impurity scattering is necessary for ex-
tracting the intrinsic scattering momenta from FT IETS
STM.

The local density of states is proportional to the local
differential tunneling conductance (i.e., dI/dV ). To look
into the renormalization effect of collective bosonic exci-
tations in the STM, the energy derivative of the LDOS,
corresponding to the derivative of the local differential
tunneling conductance (i.e., d2I/dV 2), is more favorable
to enhance the signal. For a fixed value of energy, one
first gets a set of δρ′(i, E) (the prime ′ means the energy

derivative) in real space, and then performs the Fourier
transform:

δρ′(q, E) =
∑

i

δρ′(ri, E)e−iq·ri , (12.23)

to obtain a map of the Fourier spectrum in q space,

P (q, E) = |δρ′(q, E)| . (12.24)

Up to now discussion and formulation are quite gen-
eral and can be used to study the effects of any dynamic
mode once the susceptibility χ is known. For the specific
case of magnetic mode, we take a phenomenological form
(based on the inelastic neutron scattering observations),
see also (Eschrig and Norman, 2000):

χ(q; iΩl) = −f(q)
2

[
1

iΩl − Ω0
− 1

iΩl + Ω0

]
. (12.25)

Here the spin resonance mode energy is also denoted by
Ω0. The quantity f(q) describes the momentum depen-
dence of the mode and is assumed to be enhanced at
the Q = (π, π) point. Using the correlation length ξsf

(chosen to be 2 here), it can be written as

f(q) =
1

1 + 4ξ2
sf [cos2 qx

2 + cos2 qy

2 ]
. (12.26)

This form captures the essential feature of resonant peak
observed by neutron scattering experiments in the su-
perconducting state of cuprates (Zhu et al., 2004a). Note
that strong impurity scattering will shift the position and
broaden the width of (π, π) spin resonance peak (Li et al.,
1998). However, in the Born limit, the above form of the
susceptibility should still be valid for the purpose of this
discussion. For the normal-state energy dispersion, we
adopt a six-parameter fit to the band structure used pre-
viously for optimally doped Bi-2212 systems (Norman
et al., 1995), having the form

ξk = −2t1(cos kx + cos ky)− 4t2 cos kx cos ky

−2t3(cos 2kx + cos 2ky)
−4t4(cos 2kx cos ky + cos kx cos 2ky)
−4t5 cos 2kx cos 2ky − µ , (12.27)

where t1 = 1, t2 = −0.2749, t3 = 0.0872, t4 = 0.0938,
t5 = −0.0857, and µ = −0.8772. Unless specified ex-
plicitly, the energy is measured in units of t1 hereafter.
Since the maximum energy gap for most of the cuprates
at the optimal doping is about 30 meV, while the res-
onance mode energy is in the range between 35 and 47
meV, we take ∆0 = 0.1 and Ω0 = 0.15 (i.e., 1.5∆0). To
mimic the intrinsic life time broadening, in our numerical
calculation we use γ = 0.005 in Eq. (12.20). System size
is Nx ×Ny = 1024× 1024.

We present in Fig. 33 the results of the DOS and its
energy derivative as a function of energy for a clean (i.e.,
U0 = 0) d-wave superconductor with the electronic cou-
pling to the (π, π) spin resonance modes. For compar-
ison, the DOS for the case of no mode coupling is also
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FIG. 33 Density of states (left column) and its energy deriva-
tive (right column) as a function of energy for a clean d-wave
superconductor with the electronic coupling to the (π, π) spin
resonance mode (g = 2.30). The case of no mode coupling
(g = 0) is also shown for comparison.

shown. When there is no electron-mode coupling, there
is a van Hove singularity peak appearing outside the su-
perconducting gap edge. When the electrons are coupled
to the (π, π)-spin resonance modes, the van Hove sin-
gularity peak is strongly suppressed. Instead, one sees
a dip structure following the coherent peak at the gap
edge. The distance between this dip and the coherent
peak defines the resonance energy Ω0. These results, for
the clean case, are consistent with earlier studies of the
ARPES (Abanov et al., 2002; Campuzano et al., 1999;
Dessau et al., 1991; Eschrig and Norman, 2000; Kee et al.,
2002; Norman and Ding, 1998; Shen and Schrieffer, 1997)
and DOS (Abanov and Chubukov, 2000). The shift of
states due to inelastic scattering is also expected for scat-
tering off local mode XII.B. Taking the second deriva-
tive, d2I/dV 2, emphasizes these features. As shown in
the right column of Fig. 33, when the electrons are cou-
pled to the spin resonance modes, there is a strong peak
structure at E = −(∆0 + Ω0) in the ρ′(E) spectrum.

In Fig. 34, we show the Fourier spectrum of the deriva-
tive of the LDOS at the energy −(∆0+Ω0) (i.e., the peak
position in d2I/dV 2 in the presence of the mode cou-
pling) with a structureless scattering potential Uq = U0,
arising from a single-site impurity. In the absence of
the electron-mode coupling, the Fourier spectrum inten-
sity is strongest at q = (0, 0) and its equivalent points,
and has moderate weight along the edges of the square
around q = (π, π). When the electron-spin mode cou-
pling is present, as shown in Fig. 34, the spectrum has
the strongest intensity at the diamonds around (π, π). In-
dependently of the coupling to the collective mode, the
spectrum has an intensity minimum q = (π, π). FT im-
age of d2I/dV 2 is greatly affected in this case by the
underlying band structure.

In this simple model the inelastic feature is expected
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FIG. 34 The Fourier spectral weight of the energy derivative
of the LDOS at E = −(∆0 +Ω0) for a d-wave superconductor
with the electronic coupling to the spin resonance modes (g =
2.30). For comparison, the quantity is also shown for the case
of no mode coupling (g = 0).

at Er = ∆0+Ω0 ∼ 70 meV for optimal doping. Since the
observed gap is position dependent, so is Er. The wave
vectors where the inelastic features are most prominent
depend on the momentum dependence of the disorder po-
tential, U(q), doping and the band structure. All these
combine to produce the “diamonds” seen in Figs. 34. In
addition to structure at large momenta, there are fea-
tures at small q in d2I(q, V )/dV 2 (Zhu et al., 2005a,b).
Although we focused on spin mode, FT IETS STM is ap-
plicable to lattice (Zhu et al., 2005a,b) and local inelastic
modes(Balatsky et al., 2003; Morr and Nyberg, 2003).

The FT-IETS STM technique can be applied to a va-
riety of systems, such as conventional and organic su-
perconductors, and systems exhibiting charge and spin
density waves. Disorder and ”inelastic Friedel” oscilla-
tions produced by disorder are necessary ingredients of
this new technique. Real potential of this technique can
only be assessed when a comparison is made between
experimental data and theoretical predictions on model
systems. We are optimistic that this technique will be
useful in the near future, and refer the reader to recent
literature on this new and rapidly developing field (Bal-
atsky et al., 2003; Morr and Nyberg, 2003; Zhu et al.,
2005a,b, 2004a).

XIII. AVERAGE DENSITY OF STATES IN
SUPERCONDUCTORS WITH IMPURITIES

The Green’s function formalism is well suited to the
analysis of the combined effect of many uncorrelated im-
purities in the bulk of a superconductor. The first such
treatment was given in a pioneering paper by Abrikosov
and Gor’kov (Abrikosov and Gorkov, 1960). The ba-
sic assumptions underlying the calculations were given in
Sec. III.C. After averaging over different impurity distri-
butions following Eq. (3.14), the translational symmetry
is restored, and the Green’s function takes the form

Ĝ−1(k, ω) = iωn − ξ(k)τ3 −∆0σ2τ2 − Σ̂ (13.1)

≡ iω̃ − ε̃(k)τ3 − ∆̃σ2τ2. (13.2)
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Here we took into account the matrix structure of the
self-energy, Σ̂ =

∑
i Σiτ̂i. The superconducting gap

in the presence of impurities is determined by the self-
consistency condition, Eq. (2.22), which reads here

∆(Ω̂) = πTN0

∑
ωn

∫
dΩ̂′V (Ω̂, Ω̂′)

∆̃(Ω̂′)√
ω̃2

n + ∆2(Ω̂′)
.

(13.3)
Tc is the temperature at which a non-trivial solution
of the self-consistency equation first appears. Eq.(13.3)
with the recipe for computing the self-energy form the
basis for treating superconductors with impurities. We
always ignore the contribution of Σ3, as it simply renor-
malizes the chemical potential. This is justified in com-
puting the density of states, although the corrections may
be relevant for some response functions (Hirschfeld et al.,
1988). In computing the self-energy we neglect the inter-
action between spins on different impurity sites (Galitskii
and Larkin, 2002; Larkin et al., 1971) and the interfer-
ence effects of scattering on different impurities (of the
order (pF l)−1, where l is the mean free path).

A. s-wave

1. Born approximation and the Abrikosov-Gor’kov theory

We begin by reviewing the seminal results of Abrikosov
and Gor’kov (AG) for impurity scattering in the Born
limit (phase shift δ0 ¿ 1). This sets the standard for
comparison with theories going beyond the Born approx-
imation. We follow the notations of (Maki, 1969).

Consider an impurity potential combining the poten-
tial and the magnetic scattering,

Ûimp(k− k′) = Upot(k− k′)τ3 + J(k− k′)S ·α, (13.4)

where α is defined in Eq. (3.5). AG considered the self
energy in the second order (Born approximation),

Σ̂(ω,k) = nimp

∫
dk′

(2π)3
Ûimp(k−k′)Ĝ(k′, ω)Ûimp(k′−k).

(13.5)
Integrating over k′ we find

ω̃ = ωn +
1
2

(
1
τp

+
1
τs

)
ω̃√

ω̃2
n + ∆2

, (13.6)

∆̃ = ∆ +
(

1
τp
− 1

τs

)
∆̃√

ω̃2
n + ∆2

. (13.7)

The potential (τp) and spin-flip (τs) scattering times are

1
τp

= nimpN0

∫
dΩ̂|Upot(k− k′)|2, (13.8)

1
τs

= nimpN0S(S + 1)
∫

dΩ̂|J(k− k′)|2, (13.9)

and we averaged over the directions of the impurity spin.

In the absence of spin-flip scattering both ∆ and ω are
renormalized identically, and it follows from Eq. (13.3)
that the gap remains unchanged compared to the pure
case. This is in accordance with Anderson’s theorem.
The spin flip scattering violates the time-reversal sym-
metry, and τs enters the equations for ω̃ and ∆̃ with the
opposite sign. Introducing u = ω̃/∆̃, we find

ω

∆
= u

(
1− (∆τs)−1

√
1 + u2

)
. (13.10)

It follows that the gap in the single particle spectrum is
Egap = ∆(1 − (∆τs)−2/3)3/2 for ∆τs > 1, and vanishes
for ∆τs < 1. This gapless region starts at the value of
pairbreaking parameter α

α′ = τ−1
s = ∆00 exp(−π/4), (13.11)

where ∆00 is the gap in the pure material at T = 0.
The transition temperature is determined from

ψ

(
1
2

+
1

2πτsTc

)
− ψ

(
1
2

)
= ln

Tc0

Tc
, (13.12)

where ψ(x) is the digamma function and Tc0 is the tran-
sition temperature of the pure material. Consequently,
superconductivity is destroyed (Tc = 0) when

αc = τ−1
s = πTc0/2γ = ∆00/2 > α′, (13.13)

where γ ≈ 1.78. As α′ ≈ 0.912αc AG predicted that
gapless superconductivity exists for a range of impurity
scattering (Abrikosov and Gorkov, 1960). This was later
confirmed in experiment (Woolf and Reif, 1965).

The evolution of the density of states with increas-
ing disorder was investigated in detail (Ambegaokar and
Griffin, 1965; Gong and Cai, 1966; Skalski et al., 1964),
and is shown in Fig. 35. For α < α′ a hard gap in the sin-
gle particle spectrum persists up to the critical impurity
concentration, as shown in Fig. 36. This result is clearly
at odds with our discussion in Sec. VI, which shows that
even a single magnetic impurity creates a localized state
in the superconducting gap.

2. Shiba impurity bands

In the AG theory the impurity concentration and the
strength of the exchange coupling contribute to the sup-
pression of superconductivity as a single pairbreaking pa-
rameter, α = τ−1

s = (2nimp/πN0) sin2 δ0 ∝ nimpJ
2S(S +

1) for isotropic exchange, see Eq. (13.9). This is a result
of the Born approximation; in general, the phase shift
δ0 and the concentration of impurities nimp are separate
variables that control different aspects of impurity scat-
tering. For example, in the limit of dilute concentration
of strong magnetic impurities, the AG approach yields a
small scattering rate, and a single-particle spectral gap
virtually identical to that in a pure limit. On the other
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FIG. 35 Density of states in the Abrikosov-Gorkov theory
of magnetic impurities in superconductors. Here Γ = τ−1

s .
Reproduced with permission from (Skalski et al., 1964).

FIG. 36 Plot of the dependence of the order parameter, ∆,
transition temperature, Tc, and the single particle spectral
gap, ΩG here, on the scattering rate Γ = τ−1

s . Reproduced
with permission from (Skalski et al., 1964).

hand, we have learned that in this regime each impurity
is accompanied by a bound state with the energy below
the gap, and therefore we expect a finite number of these
sub-gap states to exist in a superconductor. This section
addresses this dichotomy.

Analysis of the strong scattering regime requires use of
the self-consistent T -matrix approach (Hirschfeld et al.,
1986; Schmitt-Rink et al., 1986), where the self-energy
Σ̂(p, ω) = nimpT̂p,p, and

T̂p,p′ = Ûp,p′ +
∫

dp1Ûp,p1Ĝ(p1, ω)T̂p1,p′ . (13.14)

Following the treatment described in Sec. VI, we
analyse the pairbreaking in different angular momentum
channels. The effective pairbreaking parameter in the l-
th channel is αl = nimp(1 − ε2l )/(2πN0), where εl is the

position of the corresponding bound state, see Eq. (6.10).
In analogy with the AG treatment, we find that the ratio
un = ω̃n/∆̃(ωn) satisfies the equation (Chaba and Nagi,
1972; Rusinov, 1969)

ωn

∆
= un

[
1−

∞∑

l=0

(2l + 1)
αl

∆

√
1 + u2

n

ε2l + u2
n

]
, (13.15)

where the gap is determined self-consistently from

∆ = 2πTN0g
∑

n

(1 + u2
n)−1/2. (13.16)

This equation should be contrasted with Eq. (13.10). The
pairbreaking parameter, αl now depends separately on
the position of the single-impurity resonance state, εl and
the impurity concentration, in contrast to the AG theory.

The growth of the impurity band has been investigated
for the spherically symmetric case of purely magnetic
scattering (Chaba and Nagi, 1972; Rusinov, 1969; Shiba,
1968). The critical concentration of impurities at which
the transition temperature vanishes is obtained by set-
ting Tc = 0 in the gap equation,

ln
Tc0

Tc
= ψ(1/2 + α/2πTc)− ψ(1/2), (13.17)

where now (Ginzberg, 1979)

α =
∑

l

(2l + 1)αl. (13.18)

Since the gap equation is identical to that considered by
AG, the critical pairbreaking, αcr = ∆0/2. However, now
the critical concentration of impurities depends on the
phase shift of scattering by individual impurities, and on
the position of the single impurity resonance, see Fig. 37,

ncr = πN0∆0

[∑

l

(2l + 1)(1− ε2l )
]−1

. (13.19)

The width of the gapless regime depends on the details
of scattering. For l = 0 the gap vanishes when the pair-
breaking exceeds the value (Rusinov, 1969; Shiba, 1968)

α′

αcr
= 2ε20 exp[−πε20/2(1 + ε0)]. (13.20)

In the Born approximation the bound state moves to the
gap edge, ε0 = 1, and we regain the result of Abrikosov
and Gorkov. For stronger scattering, ε0 < 1, the realm
of gapless superconductivity is enhanced compared to the
AG theory. As higher order harmonics are included, the
threshold at which the density of states at the Fermi
energy becomes non-zero shifts even lower (Ginzberg,
1979). This behavior is modified by the inclusion of
Kondo screening (see next section), but the overall shape
of the DOS observed in planar tunneling measurements
(Bauriedl et al., 1981; Dumoulin et al., 1975, 1977) is in
agreement with these expectations.
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FIG. 37 Evolution of the spectral gaps and density of states
for strong magnetic impurities (ε0 ¿ ∆0). Left panel: avail-
able states (shaded) as a function of the impurity concentra-
tion. Right panel: qualitative features of the DOS for different
impurity concentrations; following cuts A, B, C, D on the left.
Critical concentration corresponds to line B, when the impu-
rity band touches ω = 0. The spectral gap between the top of
the impurity band and the bottom of the continuum persists
to higher impurity concentration (line D).
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FIG. 38 Evolution of the spectral gaps and density of states
for weak magnetic impurities (ε0 . ∆0). Left panel: available
states (shaded) as a function of the impurity concentration.
Right panel: qualitative features of the DOS for different im-
purity concentrations, following cuts A, B, C on the left. The
impurity band and the continuum merge at a low impurity
concentration (line B), and further evolution of the DOSs is
very close to the predictions of the AG theory. At the ritical
concentration (line C) gapless superconductivity sets in.

For l = 0 in the limit α0 ¿ ∆ the width of the impurity
band around E0 is estimated to be W = (8α0∆)1/2(1 −
ε0)1/4, and therefore varies as n

1/2
imp (Shiba, 1968). There-

fore if the resonance state at E0 is sufficiently close to the
gap edge, the concentration, c0, at which the top of the
impurity band merges with the continuum above ∆ is
smaller than the critical concentration, c′, at which the
bottom of the impurity band reaches the Fermi surface
and the superconductor becomes gapless (Shiba, 1968),
see Fig. 38. The AG result is an extreme example of this
behavior when the states due to individual impurities
are infinitely close to the gap edge, and therefore upon
increasing impurity concentration the gap decreases until
the onset of the gapless behavior.

3. Quantum spins and density of states

In the quantum treatment of the impurity spin,
Sec. XI, we discussed the competition between gapping
the density of states due to superconductivity, and the

onset of the Kondo screening of the impurity moment.
We concluded that, in contrast to classical spin, the po-
sition of the bound state is not simply given by the value
of the bare exchange coupling but depends on the ra-
tio TK/Tc. Once the position of the bound state is es-
tablished, for independent impurities the growth of the
impurity band is analogous to that in the previous sec-
tion. As discussed above, for ferromagnetic coupling of
the impurity to the conduction electrons the bound state
is always close to the gap edge, the scattering is weak,
and the Abrikosov-Gor’kov theory gives correct results.

When Kondo screening is effective, for antiferromag-
netic coupling, the behavior of the density of states
and the transition temperature was studied in the 70s
(Müller-Hartmann, 1973; Müller-Hartmann and Zittartz,
1971; Schuh and Müller-Hartmann, 1978; Zittartz et al.,
1972). Appearance of the predicted subgap band of local-
ized states (qualitatively similar to Shiba-Rusinov band,
above) was confirmed experimentally (Bauriedl et al.,
1981; Dumoulin et al., 1975, 1977). The main new re-
sult was the prediction of the re-entrant behavior for
small TK/Tc . 1. In that case the phase shift of the
scattering increases upon lowering temperature, but re-
mains moderate at Tc enabling the transition to the su-
perconducting state. Upon further decrease in tempera-
ture, scattering becomes stronger and suppresses super-
conductivity in a range of phase diagram of Fig. 39. Fi-
nally, at lowest temperatures below TK , the system re-
enters local Fermi liquid regime and superconductivity
may re-appear. While further work (Jarrell, 1990; Mat-
suura et al., 1977) cast doubt on the existence of the third
transition, region of two solutions for Tc(nimp) was con-
firmed by theoretical studies. In particular, a combina-
tion of quantum Monte Carlo technique with Eliashberg
equations gave the dependence of the re-entrance tran-
sition on the electron-phonon coupling constant, while
accounting non-perturbatively for the Kondo effect (Jar-
rell, 1990), see Fig. 39. Moreover, the initial decrease of
Tc with increasing impurity concentration is fast (Jarrell,
1990; Müller-Hartmann and Zittartz, 1971), and depends
on the coupling strangth (Jarrell, 1990). The behavior
of the density of states in this limit was investigated in
detail (Bickers and Zwicknagl, 1987; Jarrell et al., 1990).
The overall shape of the transition temperature as a func-
tion of impurity concentration with re-entrant transition
was observed in (LaCe)Al2 alloy series (Maple, 1973).

B. d-wave

As mentioned above, scalar (non-magnetic) impurities
are pair-breakers for any nonconventional superconduc-
tor, and substantially change the low-energy quasiparti-
cle spectrum. This problem has been addressed via the
self-consistent T -matrix approximation (Balatsky et al.,
1994; Gorkov and Kalugin, 1985; Hirschfeld and Gold-
enfeld, 1993; Hirschfeld et al., 1986, 1988; Lee, 1993;
Schmitt-Rink et al., 1986), which gives a finite density
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FIG. 39 Reduced transition temperature normalized to pure
system as a function of the impurity concentration for differ-
ent eletcron-phonon coupling, λ0. The impurity concentration
c̄ = nimp/(2π)2N0Tc0. From (Jarrell, 1990).

of states at the Fermi level. Here we briefly review only
the main results, see Sec.I.D for details.

The self-consistent Green’s function, averaged over im-
purity positions, is

Ĝ−1(k, ω) = Ĝ−1
0 (k, ω)− Σ̂(ω). (13.21)

with Σ̂(ω) = nimpT̂ (ω). For particle-hole symmetry
(Hirschfeld et al., 1988), and unconventional gap (de-
fined as having a zero average over the Fermi surface,
see Sec. I) the only non-vanishing component of the T -
matrix is proportional to τ0,

T0(ω) =
g0(ω)

c2 − g0(ω)
. (13.22)

The T -matrix has to be determined self-consistently with
g0(ω)〉 = (2πN0)−1

∑
k TrĜ(k, ω)τ̂0.

Solution of this equation leads to a finite density of
states at the Fermi level. This result was first ob-
tained for Born scattering (Gorkov and Kalugin, 1985;
Ueda and Rice, 1985), leading to an exponentially small
N(0)/N0 ≈ 4τ2∆2

0 exp(−2∆0τ), where τ is the normal
state scattering rate. The results are much more dra-
matic for unitarity scattering (c = 0) (Hirschfeld et al.,
1986; Schmitt-Rink et al., 1986), when

γ '
√

nimp(∆0/πN0), (13.23)

where γ = −ImΣ(ω → 0) is the scattering rate for low-
energy quasiparticles. For ω . γ, the density of states is
determined by impurities and is finite: Nimp(0)/N0 =
2γ/π∆0. The characteristic width of the impurity-
dominated region is ω∗ ' γ ∝ √

nimp.
The origin of the finite DOS is the impurity band,

growing from the impurity-induced states. Scaling of
the impurity bandwidth γ ∝ √

nimp was found for para-
magnetic impurities in an s-wave superconductor (Shiba,
1968). The fact that γ ∝ √

nimp is valid for a d-wave

superconductor is consistent with the picture of the low-
energy states formed from the bound states at finite im-
purity concentration. Many questions about localization
of low-energy quasiparticles in unconventional supercon-
ductors remain unanswered, see Sec. I).

The results above are for isotropic impurity scatter-
ing. Anisotropic impurities may preferentially scatter
electrons between regions with the same, or close values
of the gap, so that the scattering is inefficient in suppress-
ing Tc. For general impurity phase shifts this has been
considered by (Choi, 1999; Golubov and Mazin, 1999;
Haran and Nagi, 1996, 1998; Kulic and Dolgov, 1999),
while for a model with dominant small angle scattering
in cuprates (Abrahams and Varma, 2000) the effect was
analyzed by Kee (Kee, 2001).

XIV. OPTIMAL FLUCTUATION

A. Introduction

So far we discussed the effect of a single impurity on
its immediate surrounding and the combined effect of
an ensemble of scattering centers on the spatially aver-
aged properties of a superconductor. In the case of a
single pairbreaking impurity the characteristic length is
simply the superconducting coherence length, ξ0. In the
Abrikosov-Gorkov approach the gap is assumed to be uni-
formly suppressed, after averaging averaging over all the
possible configurations of impurity atoms at the mean
field level (Abrikosov et al., 1963).

It is clear, however, that some physics is missing in such
an approach. Among all the realizations of the impurity
distribution in a sample of size L0 there exist regions
where the local impurity concentration, on some charac-
teristic scale L ¿ L0, differs significantly from the aver-
age concentration, ni. If the local impurity concentration
is sufficiently high, for L > ξ0 superconductivity may be
locally destroyed of sufficiently suppressed to generate a
bound quasiparticle state at an energy E ¿ ∆0.

Of course, such regions are rare. There is a high en-
tropy cost to create an impurity droplet with the concen-
tration significantly different from the average, hence the
probability of finding these regions is small. However, the
states localized in such droplets make a non-perturbative
contribution to the density of states averaged over the
entire sample, N(E), and qualitatively modify its behav-
ior compared to the mean field (Abrikosov-Gorkov and
Shiba) treatment. Quite dramatically, they make any s-
wave superconductor with a small concentration of mag-
netic impurities (∆τs À 1) gapless (Balatsky and Trug-
man, 1997). It is due to such a dramatic modification
that the interest in these “tail” states stretching below
the mean field gap edge has peaked in recent years.

The problem of tail states did not originate in the
study of superconductivity. The contribution of regions
of anomalous impurity concentration to the net density
of states below the gap edge was first considered in doped
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semiconductors by Lifshitz (Lifshitz, 1964a,b, 1967). He
showed that such rare impurity configurations create a lo-
cal profile in the Coulomb potential that can have bound
states, and therefore gives rise to the non-vanishing den-
sity of states below the bottom of the band, Eg. Hence-
forth the states localized in the droplets of impurities
have become known as ‘Lifshitz tails’, and have been ex-
tensively studied (Halperin and Lax, 1966; Van Mieghem,
1992; Zittartz and Langer, 1966).

While, in retrospect, it is natural that inhomogeneities
lead to a low-energy tail in the density of states in su-
perconductors in much the same way, little attention has
been paid to this problem until the paper by Balatsky and
Trugman (Balatsky and Trugman, 1997). Their study
was stimulated by the experimental observations that
the tunneling density of states in s-wave superconduc-
tors with magnetic impurities is far greater at low ener-
gies than the Abrikosov-Gorkov theory suggests (Bader
et al., 1975; Edelstein, 1967; Woolf and Reif, 1965). A
number of theoretical studies of the tail states followed,
and this topic is now a subject of active interest.

Below we first briefly review the physical picture of
the tail states in semiconductors, and then apply it to
the subgap states in superconductors.

B. Tail states in semiconductors and optimal fluctuation

We distinguish between heavily doped and lightly
doped semiconductors. In the former case a localized
tail state with energy E < Eg forms in the impurity-
rich region, and the extent of its wave function greatly
exceeds the average distance between individual shallow
sites. Therefore the exact impurity potential can be re-
placed by a smooth function, averaged over regions con-
taining many impurities. The probability of realization of
the potential with the “right” energy of the bound state
among all the possible impurity distributions determines
its contribution to the DOS. In the latter case the number
of impurity sites needed to form a bound state depends
on how deep below the band edge the energy of such a
state is. For example, if each impurity binds an electron
at energy E1, while E2 is the energy of the state bound
by two impurities on neighboring lattice sites, to obtain a
localized state below E1 but above E2, one simply needs
to find a region where the two impurities are at a partic-
ular finite distance from each other. The probability of
finding such an impurity pair determines the density of
states (Lifshitz, 1964b, 1967). As we go to energies below
E2 we need to position three impurities etc.

For energy, E, the most probable (albeit still rare) con-
figuration of impurities that creates a potential U , such
that [Hband + U ]ψ = E [U ]ψ, with E [U ] = E, and there-
fore contributes the most to N(E) is called the optimal
fluctuation (OF). Given the probability density for the
potential, P [U ], and the density of states in it,

N(E) =
∫
DUP [U ]δ(E − E [U ]), (14.1)

the optimal fluctuation is obtained by using the saddle
point approximation and minimizing the resulting func-
tional with respect to U . This approach finds the entrop-
ically cheapest impurity potential that creates a bound
state at E. Therefore it optimizes the non-uniform impu-
rity distribution (fluctuation from the uniform average)
to the given energy, hence the name. The technical dif-
ficulty of minimization lies in its essential nonlinearity:
the optimal potential depends on the wave function of
the particle in this potential.

Consider many uncorrelated shallow impurity centers
forming an extended potential. It is described by the
Gaussian probability density,

P [U ] ∝ exp
[
− 1

2U0

∫
ddrU2(r)

]
. (14.2)

Saddle point approximation for Eq.(14.1) gives

ln
N(E)
N0

≈ −S[Uopt], (14.3)

where the OF is obtained by minimizing the functional

S[U ] =
1

2U2
0

∫
ddrU2(r) + λ

(
E [U ]− E

)
(14.4)

with respect to the potential U and the Lagrange mul-
tiplier λ. At the simplest level it is sufficient to con-
sider only the potentials where E [U ] = E is the lowest
energy state in the potential U ; fluctuations where E
coincides with the higher eigenstates are exponentially
less probable. In a semiconductor the kinetic energy
of the quasiparticle is p2/2m∗, where m∗ is the effec-
tive mass. Consequently, in a potential well of depth
U (all energies are measured from the band edge) and
size L the energy of the localized state is of the order of
U + 1/(mL2) = E (~ = 1). In the optimal fluctuation
E ∼ U ∼ L−2, so that the action is S[U ] ≈ LdU2/U2

0 , or
ln [N(E)/N0] ≈ −|E|2−d/2/U2

0 (Halperin and Lax, 1966;
Lifshitz, 1964b). Importantly, the size of the optimal fluc-
tuation, L ∝ |E|−1/2, increases as the energy approaches
the band edge, while its depth, |U | ∼ |E| decreases.

More formally, since the energy of the bound state is
the expectation value of the hamiltonian over the wave
function of the bound state, ψ(r), we have

E [U ] = 〈Ĥ〉 = 〈ψ| p2

2m∗ + U |ψ〉 = E (14.5)

Minimization in Eq.(14.4) with respect to U dictates that

U(x) = −λU2
0 〈ψ|

δĤ

δU
|ψ〉 = −λU2

0 ψ2(x), (14.6)

while minimization with respect to λ requires that the
bound state is at energy E, i.e. (setting m∗ = 1)

[
−1

2
∇2 − λU2

0 ψ2(r)

]
ψ(r) = Eψ(r). (14.7)
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In one dimension this equation is exactly solved to give
(Halperin and Lax, 1966)

ψ(x) =
√

κ

2
sechκx, (14.8)

λU2
0 = 8κ, (14.9)

with E = −κ2/2. Therefore the “optimal action”
S(Uopt) ' κ2/U2

0 ∼ |E|3/2 as expected.
In higher dimensions the corresponding equation is not

solvable. However, one can extract the energy depen-
dence of the action by assuming a spherically symmet-
ric optimal fluctuation and an exponentially decaying,
at large distances, bound state to find the Lifshitz tail
N(E) ∝ exp(−|E|2−d/2) (Lifshitz, 1964b; Lifshitz et al.,
1988). To obtain the pre-exponential factor one needs
to consider all the wave functions in the potential, and
this analysis has only been carried out in low dimensions
(Halperin and Lax, 1966).

C. s-wave superconductors

1. Magnetic and non-magnetic disorder

The effect of the tails is most dramatic for fully gapped
superconductors with magnetic impurities. The general
route is similar to the approach above: given the proba-
bility density of different impurity configurations, we find
the most probable configuration of impurities that gives
rise to a state at a given energy within the gap. Techni-
cal implementations of this algorithm vary depending on
the specifics of the problem at hand, see below.

There are important differences between the physics of
the optimal fluctuation in a superconductor and a semi-
conductor. First, since the superconducting quasiparti-
cles consist of electron pairs close to the Fermi surface,
their kinetic energy is not simply that of a band particle,
but is given instead by the Hamiltonian

Ĥ = ξ̂τ3 + ∆(r)τ1σ2. (14.10)

Here we use Nambu’s notations with τi and σi the Pauli
matrices in the particle-hole and the spin space respec-
tively. Therefore, while the envelope of the tail state wave
function still varies smoothly over the length scale of in-
homogeneities in the impurity distribution, there are also
rapid oscillations on the atomic scale due to the Fermi
surface. As is shown below, these considerations substan-
tially modify the behavior of the tail states.

Second, the scattering potential is a matrix in particle-
hole and spin space,

Û(r) =
∑

i

[
U0τ3δ(r− ri) + J(r− ri)Si ·α

]
.(14.11)

The potential part of the scattering, U0, is not pairbreak-
ing in accordance with Anderson’s theorem. However,
since the size of the optimal fluctuation is large compared

to the correlation length, it is necessary to distinguish be-
tween the cases where the motion of quasiparticles within
the OF is diffusive (strong potential scattering, ∆τ ¿ 1,
τ ¿ τs, where τ is the transport lifetime) and ballistic
(weak potential scattering, τ À τs). Moreover, we also
distinguish between strong and weak magnetic scattering:
if the magnetic scattering is strong there are resonance
(Shiba-Rusinov) states in the gap, and the tails stretch
not from the mean-field gap edge, but from the localized
impurity band. If the magnetic scattering can be treated
in the self-consistent Born approximation, the tail states
emerge below the Abrikosov-Gorkov renormalized single
particle spectral gap, ∆0 = ∆(1 − (∆τs)−2/3)3/2, where
∆ is the superconducting order parameter. In the AG
limit the probability density for the magnetic impurity
potential is Gaussian, as it is averaged over a large num-
ber of impurity sites. In contrast, in the unitarity limit
there are subgap states localized on one or a few impuri-
ties; consequently, Poisson density distribution is appro-
priate. These possibilities provide for a rich variety of
behavior that is still a subject of active interest.

All models ignore interactions between the impurity
spins: this is justified as discussed in Sec.III.C. The mod-
els also treat impurity spins as classical, and therefore do
not account for the Kondo effect. This is justified either
when the Kondo temperature TK ¿ Tc (and depletion
of states at the Fermi level prevents screening of the lo-
cal moment), or in the opposite limit, TK À Tc, when
the moments are quenched already in the normal state
(Müller-Hartmann and Zittartz, 1971).

To our knowledge, the first discussion of the influ-
ence of non-uniform impurity distribution on the transi-
tion temperature appeared in 1968 (Kulik and Itskovich,
1968). These authors found that, in the limit of aver-
age impuritity concentration n ¿ ncr of the Abrikosov-
Gorkov theory, there are localized regions that become
superconducting at a temperature T ′c > Tc(n), where
Tc(n) is the corresponding AG transition temperature.
The difference between the two was evaluated for par-
abolic one-dimensional variation of the effective impurity
potential. (Kulik and Itskovich, 1968) noted that their
results are modified if there is non-magnetic as well as
magnetic scattering, but did not address this further.

2. Diffusive limit, weak magnetic scattering

If the scattering on individual magnetic impurities is
weak, the optimal fluctuation is created by large droplets
of these scattering centers. Since the impurities are un-
correlated, the probability density for the impurity po-
tential is Gaussian, which greatly simplifies the analysis.

Historically, most of the studies have been carried out
in the diffusive limit. Larkin and Ovchinnikov investi-
gated the smearing of the gap edge due to local fluc-
tuations in the effective interaction between electrons
(Larkin and Ovchinnikov, 1972). If the correlation length
of the inhomogeneities, rc À ξ, where ξ is the coherence
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length of the dirty superconductor, ξ ∼ (D/∆)1/2, and
D is the diffusion constant, the order parameter simply
locally adjusts to the value of the interaction and the den-
sity of state is determined by the local gap amplitude,

N(E) =
∫ ∞

0

N(E, ∆)W (∆)d∆, (14.12)

where W (∆) is the probability density of the gap.
In the opposite limit of short-range correlations in the

pairing interaction, the finite density of states below the
mean field gap edge is due to the states spatially localized
in correlated droplets of size r0 ∼ ξ[(∆0 − E)/∆]−1/4

(increasing rapidly as E → ∆0 as in a semiconductor),
which leads to N(E) ∝ exp(−[(∆0 − E)/∆]5/4 in d = 3.
As in semiconductors, the high entropy cost of a large
droplet is offset by the lowering of the kinetic energy of
the bound state. Indeed, in a clean system with ∆τs À 1,
and therefore ∆0 ≈ ∆, we find the characteristic kinetic
energy, D/r2

0 '
√

∆2
0 − E2.

Recently it was argued that the above result is flawed
since it does not account properly for the rapid os-
cillations of the wave function of the bound state on
the scale of the Fermi wavelength (Meyer and Simons,
2001). These authors used a field-theoretical approach
that maps the disordered superconducting system onto
a non-linear σ-model (for a review, see (Altland et al.,
2000)) to show that, while the droplet size for the op-
timal fluctuation is identical to that obtained by Larkin
and Ovchinnikov, the subgap density of states is N(E) ∝
exp{−[(∆0 − E)/∆](6−d)/4}, which gives the exponent
3/4, rather than 5/4, for d = 3.

The paper that brought the investigation of the sub-
gap states in superconductors into the limelight after a
quarter-century-long hiatus was the study of the density
of states due to regions where the impurity concentration
is sufficient to locally destroy superconductivity (Bal-
atsky and Trugman, 1997). The spectrum of the fluctua-
tion region is similar to that of a disordered metallic grain
of the same size, L, and depends on the mean level spac-
ing, δL. The average density of states was obtained in
two steps. First, an average over all realizations of disor-
der for grains of size L yielded NL(E) ∼ δ−1

L . Second, the
probability of finding a fluctuation region of size L with
the critical concentration of impurities, nc, for a given
average impurity concentration, n, PL(nc; n) was used to
define the average DOS, N(E) ∼ ∫

dV PL(nc;n)NL(E).
This integral was estimated to give

N(E) ∼ δ−1
L0

exp[−Ld
0(nc ln(nc/n)− nc + n)], (14.13)

as E → 0. Here L0 = (ξ0l)1/2 is of the order of the
coherence length in a dirty superconductor with l ¿ ξ0.

At energies closer to the gap edge it is not necessary
to destroy superconductivity completely to generate the
tail states. Using the instanton approach for the nonlin-
ear σ-model, Lamacraft and Simons demonstrated how
these states arise out of inhomogeneous instanton con-
figurations for the action (Lamacraft and Simons, 2000,

2001). The resulting optimal action reads

S0 = ad(∆0τs)2/3(1−∆0τs)−2/3)−(2+d)/8

(
∆0 − E

∆

)(6−d)/4

.

(14.14)
and the DOS varies as N(E) ∼ exp[−4πg(ξ/L)d−2S0] ∼
exp{−[(∆0 − E)/∆](6−d)/4}. Here g is the bare conduc-
tance and ad ∼ 1.

The same approach was used to derive (Lamacraft
and Simons, 2001) the universal gap fluctuations in small
metallic grains, first obtained using random-matrix the-
ory (Vavilov et al., 2001), namely N(E) ∼ exp[−(∆0 −
E)3/2], valid for ∆0−E ¿ ∆0. In this regime the spatial
extent of the optimal fluctuation is greater than the size
of the grain, so that effectively we are in dimension d = 0,
and the exponent 3/2 agrees with the general result of
Lamacraft and Simons, (6 − d)/4. In the same d = 0
limit, but at E ¿ ∆0, the random matrix theory gives
N(E) ∼ (|E|/δ3/2∆1/2) exp[−πτs(∆0 − E)2/δ], where δ
is the mean level spacing in the grain (Beloborodov et al.,
2000).

3. Diffusive limit, strong scattering

Recently the field theoretical treatment has been ex-
tended to the case of strong scatterers (Marchetti and
Simons, 2002). When the probability distribution of
scattering strength is Poissonian rather than Gaussian,
the action cannot be expanded to second order in
the magnetic potential, as it was for the weak poten-
tial. Marchetti and Simons circumvented this difficulty
by considering the dominant contribution of droplets
densely populated by magnetic impurities, so that ξ ¿
ls ¿ l. As we saw above, an impurity band emerges
within superconducting gap in the limit of near-unitary
scattering already at the level of the mean field theory.
Consequently, the tail states extend from the edge of the
continuum above ∆0 as well as from the top and bottom
of the impurity band, see Fig. 41. According to Marchetti
and Simons in all these cases the density of states varies
as N(E) ∝ exp[−(|E − Ei|/∆)(6−d)/4, where Ei is the
appropriate band edge. The exponent of the action is
identical to that found above in the diffusive limit.

4. Ballistic limit, weak scattering

It was noticed early on that in some systems the mag-
netic scattering is dominant: upon increasing the con-
centration of impurities the increase in residual resistivity
ratio correlates with the suppression of the superconduct-
ing transition temperature (Edelstein, 1967). Since both
magnetic and nonmagnetic scattering contribute to the
resistivity, but only the magnetic part suppresses Tc, this
is an indication of almost purely spin-dependent scatter-
ing. Shytov and co-workers (Shytov et al., 2003) consid-
ered the subgap states in this limit in clean (l À ξ0 or
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∆τs À 1) limit, when the spectral gap obtained in the
self-consistent Born approximation nearly coincides with
the order parameter, ∆0 ≈ ∆.

Once again, since the impurities are weak, the optimal
fluctuation is large and shallow, and the spin-dependent
potential has the Gaussian probability density. When
the size of the optimal fluctuation is much greater than
the coherence length, l À L À ξ0, the motion of the
quasiparticles in this potential is ballistic. As a result,
mapping on the non-linear σ-model is not feasible, and
the problem requires quantum mechanical treatment akin
to that in a semiconductor.

As in that case, we first consider the one-dimensional
problem. An important assumption (discussed below)
is that a ferromagnetic fluctuation maximizes the effect
of the impurity potential. Choosing the direction of the
impurity spins along the y axis, performing rotation σ2 →
σ3, we remove the vector character of the slowly varying
potential U, and consider the hamiltonian

Ĥ± = ξ̂τ3 ±∆0τ1 ± U(r). (14.15)

The hamiltonian, however, still remains a matrix in the
particle-hole space, and the wave functions of the optimal
fluctuation are the Nambu spinors Ψ.

Let us discuss the physical behavior qualitatively. We
linearize the kinetic energy near the Fermi surface, so
that typical kinetic energy in an OF of size L is ξ '
vF /L. Then the energy of a quasiparticle in the op-
timal fluctuation (measured from the Fermi energy) is
E ' U +

√
∆2

0 + v2
F /L2. For the energies close to the

superconducting gap, (∆0 −E)/∆0 ¿ 1, the OF is large
(L À ξ0 = vF /∆0) and shallow (|U |/∆0 ¿ 1), so that
E − ∆0 ≈ U + v2

F /(∆0L
2). Introducing the dimension-

less energy ε = E/∆0, we obtain, in analogy with the
arguments above, |U |/∆0 ' ξ2

0/L2 ' 1 − ε. Notice
that the size of the fluctuation is L ' ξ0/

√
1− ε À ξ0.

As a result, we find (see Eq.(14.4)) S[U ] ≈ LU2/U2
0 =

∆2
0ξ0(1− ε)3/2/U2

0 . From the definition of U0,

− ln
N(E)
N0

≈ S[Uopt] ' (∆0τs)(1− ε)3/2. (14.16)

The energy dependence in Eq. (14.16) is identical to the
result of Lifshits in d = 1, despite the linear, rather than
quadratic, dependence of the kinetic energy on the size
of the droplet. This follows from the smallness of this
energy compared to the gap: even though ξ ∝ 1/L, the
expansion is in ξ2.

The minimization of the saddle-point action proceeds
exactly as in Sec. XIV.B. For spin “up” particles E+[U ] =
〈Ψ|Ĥ+|Ψ〉. Minimization with respect to U gives

U(x) = −λU2
0 〈Ψ|

δĤ+

δU
|Ψ〉. (14.17)

In principle this variational derivative includes the ef-
fect of the self-consistent suppression of the gap. How-
ever, this effect is small (Shytov et al., 2003). Then,

in exact analogy to the semiconductor problem, U(x) =
−λU2

0 (Ψ?(x)Ψ(x)), where (Ψ?Ψ) denotes the scalar
product in particle-hole space. In turn, Schrödinger
equation takes the form

[
−ivF

∂

∂x
τ3 + ∆0τ1 − λU2

0 (Ψ?Ψ)

]
Ψ = EΨ. (14.18)

This equation is solved by introducing the bilinear forms
Ri = Ψ?(x)τ̂iΨ(x), which play the role of the Halperin-
Lax wave function in the Nambu space. We find

R0 =
1− ε2

ξ0 arccos ε

1
ε + cosh(2x

√
1− ε2/ξ0)

,(14.19)

R1 = R0(ε + ξ0R0 arccos ε), (14.20)

R2 =
√

R2
0 −R2

1, (14.21)

and R3 = 0 (Shytov et al., 2004). The physical potential
of the optimal fluctuation is (Shytov et al., 2003)

U(x)
2∆0

= − 1− ε2

ε + cosh(2x
√

1− ε2/ξ0)
. (14.22)

which corresponds to the value of the action

S[U ] = 8π(∆0τs)
[√

1− ε2 − ε arccos ε
]
. (14.23)

For ε ≈ 1 the length scale of the optimal fluctuation is
ξ0/
√

1− ε2, its depth is U ∼ ∆0(1− ε2), and the density
of states N(E) ∼ exp[−(1 − ε2)3/2], in complete agree-
ment with qualitative estimates.

The most important observation of (Shytov et al.,
2003) is that in higher dimensions the optimal fluctuation
is strongly anisotropic, in contrast to both the conven-
tional semiconductors and superconductors in the diffu-
sive limit. This is a direct consequence of the composite
nature of superconducting quasiparticles: they are made
out of objects that move with the Fermi velocity. The
wave function of the subgap state is concentrated along
the quasiclassical trajectory, which is a chord in a po-
tential of any shape. Consequently, there is little energy
cost in reducing the size of the OF in the “transverse”
direction, while the smaller volume makes such fluctua-
tions more probable, see Fig. 40. As a result, the opti-
mal fluctuation is strongly elongated in one (x) direction.
The wave function of the bound state can be written as
Ψ(x,y) = exp(ikF x)Φ(x,y), where y denotes the trans-
verse d−1 coordinates, and Φ is a slowly varying function.
The kinetic energy of the quasiparticle is

ξ̂Ψ ≈ −eikF x

(
ivF

∂

∂x
+
∇2

y

2m

)
Φ ∼

(
vF

Lx
+

1
mL2

y

)
Ψ.

(14.24)
The transverse size of the fluctuation can therefore be
reduced until the second term becomes comparable to
the first, i.e. Ly ' (λF Lx)1/2, where λF ' k−1

F is the
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ballistic

diffusive

FIG. 40 The spatial structure of the optimal fluctuation in
the ballistic and the diffusive limits.

Fermi wavelength. Consequently, |U |/∆0 ∼ 1 − ε and
Lx ∼ ξ0/

√
1− ε, and

S[Uopt] ' LxLd−1
y

U2

U2
0

' (∆0τs)
(

EF

∆0

) d−1
2

(1− ε)
7−d
4 ,

(14.25)
where EF is the Fermi energy. Consequently, the density
of states, N(E) ∼ exp[−(1− ε)(7−d)/4].

The action for this anisotropic fluctuation is smaller
than that for an isotropic droplet with the same energy
of the bound state, by a factor of (EF /∆0)(d−1)/2(1 −
ε)−(d−1)/4, so that the corresponding DOS is exponen-
tially higher.

Since the optimal fluctuation is a result of a sad-
dle point approximation for the functional integral,
Eq. (14.1), it is only valid when S[Uopt] À 1, or

1− ε À (∆0τs)
4

d−7

(
∆0

EF

) 2(d−1)
7−d

. (14.26)

For d = 1 this condition is 1− ε À (∆0τs)−2/3, while for
d = 3 it does not depend on the gap, 1− ε À (kF l)−1.

It is possible to compare the DOS given by differ-
ent approaches at the crossover scale between the dif-
fusive and the ballistic regimes (Vekhter et al., 2003). A
transition to the diffusive regime occurs when the size
of OF L ≥ vF τs, or 1 − ε ≤ (∆0τs)−2. The result of
Ref.(Lamacraft and Simons, 2000) for ∆0τs À 1 is SD =
(∆0τs)5/3(EF /∆0)d−1(1−ε)(6−d)/4. Consequently, at the
crossover point the action from Eq. (14.25) is smaller,
SD/S0 ' (EF /∆0)(d−1)/2(∆0τs)7/6 À 1, and the OF
found by Shytov et al. corresponds to a greater DOS.
Therefore the structure of the OF near the crossover be-
tween the ballistic and diffusive regimes still resembles
closely that given above. As the size of the OF increases
even further, the anisotropic fluctuation becomes insup-
portable due to diffusive motion.

Balatsky and Trugman (Balatsky and Trugman, 1997)
considered only the DOS at E = 0 due to the suppres-

sion of superconductivity by paramagnetic impurity po-
tential. They needed a large volume fluctuation, V ≥ ξd,
which is less probable and yields lower DOS than that of
Eq. (14.25). (Vekhter et al., 2003) checked whether local
suppression of the gap from ∆0 to E due to a large num-
ber of impurities with uncorrelated spins (as opposed to a
ferromagnetic OF above) is advantageous. For 1− ε ¿ 1
the local pairbreaking rate, γ, needed to reduce the gap
to E is γτs ≈ 1+(1− ε)(∆0τs)2/3, and the volume of the
region has to be at least equal to that of the anisotropic
OF to avoid high kinetic energy cost (this is an underesti-
mate since it ignores proximity coupling to bulk). In that
case the optimal action SBT /S0 ≈ (∆0τs)1/3(EF /∆0)c̄,
where c̄ = nimpλ

d
F is the atomic concentration of impu-

rity atoms. As a result, for realistic values of c̄ and clean
samples SBT À S0, and the DOS given by the action in
Eq. (14.25) is higher. Therefore the ballistic limit of the
action obtained by (Shytov et al., 2003) is expected to
be valid up to the crossover to the diffusive regime.

5. Ballistic regime, strong scattering

As of today, we are not aware of any investigations
of the structure of the optimal fluctuation in the bal-
listic regime, when there exist bound states on individ-
ual magnetic impurities. It is reasonable to assume that
the result differs from the standard Lifshitz formula for
the same reason as in the section above: the wave func-
tions of the states localized on magnetic impurities in
superconductors oscillate with the Fermi wavelength, see
Sec. VI. As a result, in the dilute impurity limit, the shift
of the energy level localized on, for example, two impuri-
ties located at distance R À p−1

F , will be suppressed by
the typical factor exp(−R/ξ0) (Rusinov, 1968). Conse-
quently, the states significantly below the impurity band
must be created by a large number of impurities or impu-
rities located on neighboring lattice sites. This problem
still awaits further investigation.

6. Summary

In s-wave superconductors with magnetic impurities
the density of states does not vanish irrespective of the
concentration and nature of the impurity scattering. The
tails of the density of states extend into the mean field
gap. Therefore all superconductors with magnetic impu-
rities are gapless. This behavior is illustrated in Fig. 41.

XV. SUMMARY AND OUTLOOK

While considering the role of impurities in conventional
and unconventional superconductors, this review focused
on theoretical and experimental results that highlight the
new physics beyond standard Abrikosov-Gor’kov theory,
Anderson theorem and average lifetime effects. The stud-
ies of disorder in s-wave superconductors were carried out
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FIG. 41 Sketch of the density of states in an s-wave supercon-
ductor with magnetic impurities. Blue shade denotes regions
where the mean field density of states is finite. Red shading
signifies the finite, but exponentially small DOS induced by
the fluctuations in the local impurity distribution. If the im-
purities are weak, the impurity band is absent and the tail
extend from the mean field gap edge.

in detail in the 1960’s. We discussed more recent results
in this field. Our main emphasis has been on how indi-
vidual impurities influence local electronic states in their
immediate vicinity, and on deviations from the standard
Abrikosov-Gorkov theory on mesoscopic scales. This fo-
cus is dictated both by the advances in experimental tech-
niques, which can now use NMR methods and STS mea-
surements to probe electronic states with atomic spatial
resolution, at the scales where impurities perturb their
surrounding, (Fischer et al., 2005), and the concomitant
development of new theoretical approaches.

The stimulus for such extensive studies is that impu-
rities are markers that allow to reveal the nature of cor-
relations and pairing of the state where impurities are
placed. Indeed particular pattern of impurity-induced
electronic states is closely connected to the symmetry of
the superconducting gap and to the underlying electronic
band structure and helps us to understand the nature of
superconducting pairing. If strong electronic correlations
in the ground state are present, they also are reflected in
details of impurity induced states. Therefore watching
the waves created by throwing a pebble in the pond of
correlated electrons helps us understand the properties
of the underlying electronic liquid.

We kept the discussion general to allow applications to
other systems and materials. For instance, this was our
rationale for employing the BCS state to describe super-
conductivity. We believe that it is a good approximation
in heavy fermion, organic superconductors and SrRuO4,
at very low energy. At the same time, deviations from
this mean field picture may provide additional details on
the underlying physics of the particular material. Ma-

jority of the data at a moment are obtained in high-Tc

materials. It is clear that similar local effects are present
around impurities in other unconventional superconduc-
tors, e.g. in NaxCoO2 · yH2O superconductors (Wang
and Wang, 2004), although we are not aware of any data
on single impurity states in these materials. Given the
importance of the impurity states, this field will undoubt-
edly be extended to other systems by future experiments.

Outlook for the future. New ideas and directions con-
tinue to emerge in the studies of electronic properties
induced by impurities. The suite of new experimental
tools that address local electronic effects, such as STM,
will help to clarify the role of interference between sev-
eral impurities, and pave the way towards connecting the
microscopic local states with average properties. Recent
theoretical work addressed some aspects of this subject
(Andersen, 2003; Atkinson et al., 2003; Morr and Bal-
atsky, 2003; Morr and Stavropoulos, 2003b; Zhu et al.,
2003, 2004b), and is awaiting direct comparison with ex-
periment.

Another promising avenue is combining the spatial
resolution of STM-STS with the time resolution. The
subject is still in its infancy, both theoretically and ex-
perimentally, but hold immense promise for the future.
Sec. XI reviewed some of very recent work in this direc-
tion. Temporal and spatial characterization of the states
generated by dynamical impurities allow exploration of
the correlations inside the electronic state in which im-
purity is placed. One obvious example where such char-
acterization is crucial is the Kondo effect in a supercon-
ducting state. It is desirable to have a time resolved
measurements that allow to visualize the Kondo effect
in a superconductor. Another interesting problem that
needs further elaboration is a role of collective modes in
impurity-induced states. We are only starting to investi-
gate these questions, as discussed in Sec. XII.C.

Real progress on these problems will be made when we
have real data. As usual, one should expect that the data
will have surprises that were not anticipated in simple
theoretical models. This will motivate further theoretical
studies, stimulate more measurements, and therefore will
lead to a rapid further development of the field. They
can provide space (and time) resolved window into the
intimate workings of the correlated electron matter. We
have every reason to be enthusiastic and optimistic about
the future the field of impurity states in superconductors,
and in other correlated electron systems.
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List of Symbols

Quantity Explanation
a Lattice parameter
b(b†) Bosonic annihilation (creation) operators
c(c†) Fermionic ahhihilation (creation) operators
d Spatial dimension
D Half energy bandwidth
∆0 Superconducting energy gap
∆k Momentum-dependent superconducting energy gap
φn(r) Electron eigenfunction
EF Electron Fermi energy
G(τ, τ ′), G(τ, r) Electron Green’s function in coordinate space
G(ωn,k), G(k, ωn) Electron Green’s function in Matsubara frequency and momentum space
H,H,Hint Hamiltonian
J, J0, Jc Exchange coupling
L Linear dimension of a system
µ Chemical potential
N(ε) Electron density of states
N(ε, r), N(E, i) Electron local density of states
ψ(r(ψ†(r)) Fermionic field operators in continuum space
|Ψ〉, |Ψ0〉 BCS variational wavefunction
|Ψ−1〉, |Φ−1〉 Excited variational wavefunction with single particle excitation present
r Spatial coordinates
σ Pauli matrices in spin space
τ Pauli matrices in Nambu space
Vαβγδ, Ṽαβ Superconducting pairing interaction
S Local spin operator
t, t′ Electron hopping integral
u Electron-like Bogoliubov quasiparticle wavefunction amplititude
T (ω) T -matrix
T Temperature
v Hole-like Bogoliubov quasiparticle wavefunction amplititude
U Hubbard on-site electron-electron interaction
U0 Impurity scattering potential
W Half energy bandwidth
Wk D-density-wave order parameter
ξ0 BCS superconducting coherence length at low temperatures
ξ(T ) BCS temperature dependent coherence length
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