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Dirac materials
Materials whose nontrivial  electronic 
properties are a direct consequence of 
Dirac spectrum E = vk: specific heat 
~T, penetration depth~T, optical 
conductivity~T^n, 
Can be a collective state: 3He 
superfluid, heavy fermion, organic, 
high Tc

 
superconductors, density wave 

states
Band structure effect --

 
graphene

Not a Dirac equation (1928)



Dirac materials vs
 

metals

Metals

FS

E = v(k-k_F)

Dirac materials
(3He included)

E = vk, k_F

 

= 0

empty

occupied

Dimensionality of zero energy states in one less( at least)
In the Dirac materials.  Fewer excitations at low T.



•
 

Narrow it down to d-wave SC and 
graphene

•
 

Though please keep in mind He3, 
organic materials.

•
 

Too diverse set to cover at once.
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One dimensional: nanotubes

A. Geim, P Kim, deHeer



Dirac fermions in d-wave SC
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"non relativistic supersymmetry"
 as an operator that flips particles into

holes.
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τ
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Nodal excitations near
gap nodes are exactly Dirac

Nodal points at p_x

 

= p_y

Bogoliubov

 

quasiparticles

These nodal points are responsible for a lot of 
Interesting and puzzling physics in high-Tc

 

materials
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sample

LDOSDOS
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Local Probes:Scanning tunneling microscopy/spectroscopy
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Spectroscopic map (LDOS map) 
can be obtained.



Similarities of physics of Dirac 
materials

•
 

Impurity states in d-wave and in graphene
•

 
Electronic nanoscale

 
inhomogeneity

 
in d-

 wave and in graphene
•

 
Playbook of d-wave Dirac fermions is to be 

repeated in graphene
Except much faster, now that we know
what to look for

•
 

More to be filled in: correlations, topological 
excitations, WC
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for impurity-state

Balatsky,  A.V., Salkola

 

M.I., &  Rosengren, A.,  Phys. Rev. B 51, 15547 (1995).
A.V. Balatsky, I. Vekhter

 

and J. X Zhu, Rev. Mod Phys, 78, p 373, (2006)

Earlier work: d-SC Impurity Resonances

-

On-site potential              On-site LDOS
U>0

E

Cross
shaped 
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SI-STM Image at E=–1.5mV0 560 Å

0
56

0 
Å

!

Nature 403, 746 (2000).

Bi2

 

Sr2

 

Ca(Cu1-x

 

Znx

 

)2

 

O8+d

 

: x ≅

 

0.2%

Zn Impurity-State

~20
Zn atoms

Cross shaped
Impurity state
(due to 4 fold gap)



Impurity states in ANY Dirac 
point materials



Impurity states in ANY Dirac 
point materials



Impurity states in ANY Dirac 
point materials



Impurity states in ANY Dirac 
point materials



T = U/(1-G0(Ω)U)
Hence the pole at G0(Ω) = 1/U 

H. Kruis

 

et al, PRB 64, 
p 054501(2001); RMP 78, p373(06)



Electronic properties of graphene

•
 

Repeating d-wave play book
•

 
Proposal: to image local electronic 

properties, defects, dopants
 

etc
•

 
Role of impurities in superconducting 
graphene

•
 

A. Geim
 

“Graphene
 

is  a perfect 
system”



A

B

t

t’

• 1 electron per π
 

orbital: half-filled
• Kinetic energy: n.n.     t (γ0

 

)
 

~ 3  eV
n.n.n.        t’ ~ 0.1 eV

1.42 A

Electronic properties



Robust samples:

1 μm

0Å

 

9Å

 

13Å

SiO2

Si

Au contacts

GRAPHENE

1 μm



Chiral
 

Fermions in Graphene

two 
sublattices

superposition
of their 

wavefunctions

spinors
(2 projections
of pseudospin)



Dirac fermions in graphene

Low energy elementary excitations are 
two-dimensional Dirac-Fermions.

DOS is similar top d-wave SC because of nodal 
points
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Dirac Fermions in Graphene

E
k1k2

Brillouin
 

zone Tight binding model



Electronic properties of graphene

•
 

Repeating d-wave play book
•

 
Proposal: to image local electronic 

properties, defects, dopants
 

etc
•

 
Similarities with defects in d-wave

•
 

Role of impurities in superconducting 
graphene

•
 

A. Geim
 

“Graphene
 

is  a perfect 
system”



Graphene
 

goes STM
Epitaxial

 
Graphene HOPG

C. Berger et. al., Science 312, 1191 Y. Niimi

 

et. al., PRL 97, 236804
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Modelling “dirty”
 

graphene

Clean Graphene:

Impurities:

Tight binding model



Single and double impurities

Energy of impurity resonances:

Single imp.:

Double imp.:

T. Wehling

 

et. al., PRB 75, 125425 (2007)



Impurity states in ANY Dirac 
point materials



Real space signatures I

r-dependent LDOS at imp. resonance

Eimp

 

=0.1eV

Niiimi, PRL97,
236804  (06)



Real space signatures  II

Site projected LDOS

Single Double



Magnetic Impurities

Possibility of fully spin-polarized imp. states

J=2eV (right)Imp. Site (left), NN (right)

Single Impurity Double Impurity

Power law decay of imp. states: δN~1/r ------> Long range exchange

T. Wehling

 

et. al., PRB 75, 125425 (2007)



Electronic properties of graphene

•
 

Repeating d-wave play book
•

 
Proposal: to image local electronic 

properties, defects, dopants
 

etc
•

 
Similarities with defects in d-wave

•
 

Role of impurities in superconducting 
graphene

•
 

A. Geim
 

“Graphene
 

is  a perfect 
system”



Superconducting  graphene: 
proximity induced SC

N(E)

EVμ125=Δ

Morpurgo, Nature, 
March 1, 2007

Predicted
DOS, not
measured yet!



8*8 Bogoliubov
 

de Gennes

•
 

One has to deal with 8 component 
spinors:

2 valley* 2sublattice*2(u, v)  = 8 
components

SC pairing in graphene
 

really engages 
valleys in a nontrivial way



Superconducting graphene

Proximity effect -> SC gap

up down

(C. Beenakker, PRL 97, 067007 (2006))



Impurities in SC graphene

(gap = bandwidth / 10)

Energy E of impurity state as function of potential V1

Scalar (cell averaged) impurity

Asymptotics



Real space fingerprint of 
impurities

Asymptotic decay 

(gap = bandwidth/10)

Density of intra gap imp. states

Ringstructures
 

in STM 

at constant bias

A. Yazdani,Science, 97



Electronic properties of graphene

•
 

Repeating d-wave play book
•

 
Proposal: to image local electronic 

properties, defects, dopants
 

etc
•

 
Similarities with defects in d-wave

•
 

Role of impurities in superconducting 
graphene

•
 

A. Geim
 

“Graphene
 

is  a perfect 
system”



Similarities of HighTc
 

with   Graphene
 

II: 
nanoscale

 
inhomogeneity

•
 

Dirac spectrum of qp
•

 
Micron mean free path, very clean

•
 

Strong electronic (~ 50% charge)
inhomogeneity

 
that coexists with

•
 

the long mfp
 

for low energy electrons

ε=3.6SiO2

Y 
[μ

m
]

X [μm]

A.Yacobi

STM confirms similar inhomogeneity
Stroscio

 

et al,  E. Andrei et al



STM data by Stroscio

Patterns are more homogeneous at lower doping

Science, v 317, p 219, 2007



STM data by Stroscio

Patterns are more homogeneous at lower doping

Science, v 317, p 219, 2007



STM data by Stroscio

Patterns are more homogeneous at lower doping

Science, v 317, p 219, 2007
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Spectrum),(g Err≡

Weak, 
dispersive, 

LDOS 
modulation

 s
for all 
E<0.5Δ

)16,(g meVEr −=
r

(1)

Map 
LDOS

as E->0.

Δ

Nature 413, 282

 

(2001), Nature 415, 412 (2002)
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Spectrum),(g Err≡

20 m

70 m

Intense 
nanoscale
disorder
seen in 
‘gapmap’

2Δ

)(rrΔ

(2)

Map Δ
 

as a 
function 

of 
location: 
‘gapmap’

Inhomogeneity

 

as an energy dependent property: low energies-homogeneous
Higher  energies inhomogeneous

Long mean free path can coexist with inhomogeneity



Bilayer
 

electronic structure

22
4,3,2,1 )2/(2/ pttE +±±= ⊥⊥

Kissing point that is highly 
susspectible

 
to the gap opening: possible states:

Ferrimagnetisim
 

( Stoner), AC Neto
 

et al
Wigner Crystal/Commensurate CDW: AVB, H. Dahal

 
et al.



Negative compressibility and 
Charge ordering in bilayer

 graphene
•

 
CDW instability in Bilayer

 
graphene

 due to  parabolic “kissing point”
•

 
Negative charge compressibility, A H C 
Neto

 
etal, H. Dahal

 
etal.

H. Dahal, submitted 2007
arXiv:0706.1689

http://xxx.lanl.gov/abs/0706.1689


Another surprise: Inelastic Electron 
Tunneling Spectroscopy in Dirac Materials

•
 

Signatures of Dirac particles 
interacting with the lattice.

•
 

Fermions live in real lattice, not 
vaccum.

Crommie

 

group
, UC Berkeley
submitted



What is going on? Why we do not see a Dirac cone?
Conjecture:
Inelastic effect due to electron-phonon coupling. Phonon energy is 60 meV
And momentum that connects Gamma and K point.



Band structure and tunneling
Quasi free electron states
k||

 

=0

Dirac electrons

k||

 

=1.7Å-1

 

==> fast decay in the vacuum

WEHLING et al, cond

 

mat April 2008



Vacuum decay of graphene 
wave functions

Decay constants: π-band for flat graphene:
 

4Å-1

π-band with frozen phonon:2Å-1

nearly free electron
 

state:
 
1Å-1

WEHLING et al, cond

 

mat April 2008



Electron phonon interaction

Scattering between the Dirac states and the quasi free states

Non zero DOS Nσ

 

(E) in quasi free channel for |E|>ω a

Tunnelling through quasi free states greatly enhanced:

with

104 for z = 5 Å

WEHLING et al, cond

 

mat April 2008



Tunnelling vs. total DOS

Density of states for different coupling constants (λ=0-0.7eV)

total DOS virtually unaffected

nearly free states' DOS

(Fixed doping. Chemical potential μ

 

= 0.4 eV)

WEHLING et al, cond

 

mat April 2008



STS for different amounts of 
doping

DOS of quasi free electron channel for different chemical potentials 
(μ=-0.4...+0.4eV)

(Fixed electron phonon interaction λ

 

= 0.4 eV)

WEHLING et al, cond

 

mat April 2008



Conclusion and future directions
•

 
Strong cimilarities

 
across classes: Dirac fermions as one 

realization of correlated and low dimensional electronics.
•

 
Growing list of materials with similar properties:

•
 

Similar physics of Impurity states in high-Tc
 

and in  
Graphene, normal and superconducting.

•
 

Expect new physics at nanoscale
 

that has no precedent 
in “nicely behaving”

 
bulk materials.

•
 

Electronic inhomogeneity
 

and impurity states is a reality 
in graphene

 
inspite

 
of micron mfp. Similar story to highTc

•
 

One needs adequate tools both theoretical and 
experimental to address inhomogeneity, frustration and 
local correlations. 
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